北大ACM - POJ试题分类 (2017整理版)

北大ACM - POJ试题分类

*—— By EXP 2017-12-03 *

转载请注明出处: by EXP https://exp-blog.com


相关推荐文:


1.入门水题

可用于练手与增强自信
POJ-1003 POJ-1004 POJ-1005 POJ-1207 POJ-3299 POJ-2159 POJ-1083 POJ-3094

2.初级

2.1. 基本算法-
枚举POJ-1753 POJ-2965
贪心POJ-1328 POJ-2586
递归和分治法-
递推-
构造法POJ-3295 POJ-3239
模拟法POJ-1008 POJ-1068 POJ-2632 POJ-1573 POJ-2993 POJ-2996 POJ-3087
高精度算法21位大数的水仙花数
POJ-1001 POJ-1503 POJ-2109 POJ-2389 POJ-2602 POJ-3982

2.2. 图算法-
图遍历(前序序列、中序序列、后序序列)POJ-2255
最短路径算法
(dijkstra, bellman-ford, floyd, heap+dijkstra)
POJ-1860 POJ-3259 POJ-1062 POJ-2253 POJ-1125 POJ-2240
最小生成树算法(prim, kruskal)POJ-1789 POJ-2485 POJ-1258 POJ-3026
拓扑排序POJ-1094
二分图的最大匹配 (匈牙利算法)POJ-3041 POJ-3020
最大流的增广路算法(压入重标法、KM算法)POJ-1459 POJ-3436

2.3. 数据结构-
POJ-1016 POJ-1035 POJ-3080 POJ-1936
排序(快排、归并排、堆排)POJ-1007 POJ-2388 POJ-1804 POJ-2299
并查集-
高效查找法
(数的Hash、串的Hash、二分查找)
POJ-1002 POJ-3349 POJ-3274 POJ-1840 POJ-2002 POJ-3432 POJ-2503
哈夫曼树、优先队列POJ-3253
-
trie树(静态建树、动态建树)POJ-2513

2.4. 搜索-
深度优先搜索DFSPOJ-2488 POJ-3083 POJ-3009 POJ-1321
广度优先搜索BFSPOJ-3278 POJ-1426 POJ-3126 POJ-3414 POJ-2251
简单搜索技巧和剪枝POJ-1010 POJ-2362 POJ-1011 POJ-1416 POJ-2676 POJ-1129

2.5. 动态规划--
背包问题-POJ-1837 POJ-1276 POJ-1014
DP(动态规划)
可参考《刘汝佳:算法法艺术与信息学竞赛》
(黑书一)page 149
E[j] = opt{D+w(i,j)}POJ-1018 POJ-3267 POJ-1836 POJ-1260 POJ-2533
最长公共子序列
E[i,j] = opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij}
POJ-1015 POJ-3176 POJ-1163 POJ-1080 POJ-1159
最优二分检索树问题
C[i,j] = w[i,j]+opt{C[i,k-1]+C[k,j]}

2.6. 数学--
组合数学加法原理和乘法原理
排列组合
递推关系POJ-1012 POJ-3252 POJ-1850 POJ-1496 POJ-1019 POJ-1942
逻辑推理POJ-1013 POJ-1017
数论素数与整除问题POJ-2739 POJ-2262 POJ-3006
进制位
同余模运算POJ-2305 POJ-2635 POJ-3292 POJ-1845 POJ-2115
中国余数定理
(扩展欧几里德、辗转相除法)
POJ-1006
计算方法二分法求解单调函数POJ-3273 POJ-3258 POJ-1905 POJ-3122
随机化算法POJ-2531
概率POJ-2151

2.7. 计算几何学-
几何公式
叉积和点积的运用
(如线段相交的判定、点到线段的距离等)
POJ-2031 POJ-1039
多边型的简单算法(求面积) 和
相关判定(点在多边型内、多边型是否相交)
POJ-1408 POJ-1584
凸包POJ-1696 POJ-2187 POJ-1113

3.中级

3.1. 基本算法-
C++的标准模版库的应用POJ-3096 POJ-3007
较为复杂的模拟题的训练POJ-3393 POJ-1472 POJ-3371 POJ-1027 POJ-2706 POJ-1009

3.2. 图算法-
差分约束系统的建立和求解POJ-1716 POJ-1201 POJ-2983
最小费用最大流POJ-2516 POJ-2195
双连通分量POJ-2942
强连通分支及其缩点POJ-2186
图的割边和割点POJ-1523 POJ-3352 POJ-3177
最小割模型、网络流规约POJ-3308

3.3. 数据结构-
线段树POJ-2528 POJ-2828 POJ-2777 POJ-2886 POJ-2750
静态二叉检索树POJ-2482 POJ-2352
树状树组POJ-1195 POJ-3321
RMQPOJ-3264 POJ-3368
并查集POJ-1703 POJ-2492
KMP算法POJ-1961 POJ-2406

3.4. 搜索-
最优化剪枝和可行性剪枝
搜索的技巧和优化POJ-1020 POJ-3411 POJ-1724
记忆化搜索POJ-3373 POJ-1691
搜索与状态压缩POJ-1184

3.5. 动态规划-
较复杂的动态规划
(如特别的旅行商问题等)
POJ-1191 POJ-1054 POJ-3280 POJ-2029 POJ-2948 POJ-1925 POJ-3034
记录状态的动态规划POJ-3254 POJ-2411 POJ-1185
树型动态规划POJ-2057 POJ-1947 POJ-2486 POJ-3140

3.6. 数学--
组合数学容斥原理
抽屉原理
置换群与Polya定理POJ-1286 POJ-2409 POJ-3270 POJ-1026
递推关系和母函数
数论高斯消元法POJ-2947 POJ-1487 POJ-2065 POJ-1166 POJ-1222
概率问题POJ-3071 POJ-3440
GCD(最大公约数)
LCM(最小公倍数)
POJ-3101
中国余数定理
(扩展欧几里德、辗转相除法)
计算方法0/1分数规划POJ-2976
三分法求解单峰/单谷的极值
矩阵法POJ-3150 POJ-3422 POJ-3070
迭代逼近POJ-3301
随机化算法POJ-3318 POJ-2454
杂题POJ-1870 POJ-3296 POJ-3286 POJ-1095

3.7. 计算几何学-
坐标离散化
扫描线算法
(如求矩形的面积和周长,常和线段树或堆一起使用)
POJ-1765 POJ-1177 POJ-1151 POJ-3277 POJ-2280 POJ-3004
多边形的内核(半平面交)POJ-3130 POJ-3335
几何工具的综合应用POJ-1819 POJ-1066 POJ-2043 POJ-3227 POJ-2165 POJ-3429

4.高级

4.1. 基本算法-
代码快速写成(精简但不失风格)POJ-2525 POJ-1684 POJ-1421 POJ-1048 POJ-2050 POJ-3306
保证正确性和高效性POJ-3434

4.2. 图算法-
度限制最小生成树 和 第K最短路POJ-1639
最短路、最小生成树、二分图、最大流问题的相关理论
(主要是模型建立和求解)
POJ-3155 POJ-2112 POJ-1966 POJ-3281 POJ-1087 POJ-2289 POJ-3216 POJ-2446
最优比率生成树POJ-2728
最小树形图POJ-3164
次小生成树
无向图、有向图的最小环

4.3. 数据结构-
trie图的建立和应用POJ-2778
LCA和RMQ问题:
LCA(最近公共祖先问题)
离线算法(并查集+dfs)
在线算法(RMQ+dfs)
POJ-1330
双端队列和应用
(维护一个单调的队列,常在动态规划中起到优化状态转移的目的)
POJ-2823
左偏树(可合并堆)
后缀树POJ-3415 POJ-3294

4.4. 搜索-
较麻烦的搜索题目训练POJ-1069 POJ-3322 POJ-1475 POJ-1924 POJ-2049 POJ-3426
广搜优化
(利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法)(RMQ+dfs)
POJ-1768 POJ-1184 POJ-1872 POJ-1324 POJ-2046 POJ-1482
深搜优化
(尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法)
POJ-3131 POJ-2870 POJ-2286

4.5. 动态规划-
需要用数据结构优化的动态规划POJ-2754 POJ-3378 POJ-3017
四边形不等式理论
较难的状态DPPOJ-3133

4.6. 数学--
组合数学MoBius反演POJ-2888 POJ-2154
偏序关系理论
计算方法极大极小过程POJ-3317 POJ-1085
Nim问题

4.7. 计算几何学-
半平面求交POJ-3384 POJ-2540
可视图的建立POJ-2966
点集最小圆覆盖
对踵点POJ-2079

4.8. 综合题
POJ-3109 POJ-1478 POJ-1462 POJ-2729 POJ-2048 POJ-3336 POJ-3315 POJ-2148 POJ-1263
  • 117
    点赞
  • 642
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
ACM-ICPC(国际大学生程序设计竞赛)是一项面向大学生的计算机编程竞赛,涉及算法和数据结构等领域。在比赛中,选手需要解决一系列编程问,使用合适的算法和数据结构来实现正确和高效的解决方案。 对于整理ACM-ICPC模板,以下是一些建议: 1. 了解比赛要求:首先,你需要了解ACM-ICPC比赛的具体要求和规则。这包括了解比赛所涉及的算法和数据结构,以及目的类型和难度等。 2. 收集资料:收集与ACM-ICPC相关的资料,包括经典算法和数据结构的实现代码、常见问的解思路等。可以参考教材、博客、论文等资源。 3. 整理模板:将收集到的资料整理成模板。可以按照算法和数据结构的分类进行整理,例如排序算法、图算法、字符串算法等。对每个模板,添加必要的注释和示例代码,以便理解和使用。 4. 测试代码:对每个模板编写测试代码,确保它们的正确性和可靠性。可以使用已知的测试用例或自行设计测试用例。 5. 更新与扩充:定期更新和扩充模板,以适应ACM-ICPC比赛中新出现的算法和数据结构。同时,根据自己的经验和理解,对模板进行优化和改进。 6. 练习和复习:在比赛之前,利用整理好的模板进行练习和复习。尝试解决一些经典问,使用模板中的算法和数据结构进行实现,并进行优化。 希望这些建议对你整理ACM-ICPC模板有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值