【动手学习深度学习--逐行代码解析合集】10Dropout暂退法

【动手学习深度学习】逐行代码解析合集

10Dropout暂退法


视频链接:动手学习深度学习–Dropout暂退法
课程主页:https://courses.d2l.ai/zh-v2/
教材:https://zh-v2.d2l.ai/

1、暂退法原理

在这里插入图片描述
在这里插入图片描述

2、从零开始实现暂退法

import torch
from torch import nn
from d2l import torch as d2l

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

# 该函数以dropout的概率丢弃张量输入X中的元素
def dropout_layer(X, dropout):
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃
    if dropout == 1:
        return torch.zeros_like(X)
    # 在本情况中,所有元素都被保留
    if dropout == 0:
        return X
    # torch.rand(X.shape)生成0-1之间的均匀随机分布,大于dropout的返回1,小于的返回0
    mask = (torch.rand(X.shape) > dropout).float()
    # mask随机生成0或1
    return mask * X / (1.0 - dropout)
# 测试dropout_layer函数,暂退概率分别为0、0.5和1。
X=  torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))

运行结果
在这里插入图片描述

2.1 定义模型参数

# 定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元。
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

2.2 定义模型

我们可以将暂退法应用于每个隐藏层的输出(在激活函数之后), 并且可以为每一层分别设置暂退概率: 常见的技巧是在靠近输入层的地方设置较低的暂退概率。 下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5, 并且暂退法只在训练期间有效。

# 定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元。
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
# 模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5
dropout1, dropout2 = 0.2, 0.5

class Net(nn.Module):
    # is_training = True:给程序标注是在训练
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
                 is_training = True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)  # 第一个隐藏层
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)  # 第二个隐藏层
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)  # 输出层
        self.relu = nn.ReLU()  # 激活函数

    def forward(self, X):
        # 对第一个隐藏层作非线性激活后,再使用dropout
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
        # 只有在训练模型时才使用dropout
        if self.training == True:
            # 在第一个全连接层之后添加一个dropout层
            H1 = dropout_layer(H1, dropout1)
        # 对第二个隐藏层作非线性激活
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            # 在第二个全连接层之后添加一个dropout层
            H2 = dropout_layer(H2, dropout2)
        # 输出层不作用dropout
        out = self.lin3(H2)
        return out

net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

2.3 训练和测试

# 训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

在这里插入图片描述

若不使用dropout对比结果(此处将dropout1, dropout2 = 0.0, 0.0)
在这里插入图片描述

3、暂退法的简洁实现

# 简洁实现
net = nn.Sequential(nn.Flatten(),
        nn.Linear(784, 256),  # 第一个隐藏层
        nn.ReLU(),  # Dropout放在ReLU前后均可
        # 在第一个全连接层之后添加一个dropout层
        nn.Dropout(dropout1),
        nn.Linear(256, 256),  # 第二个隐藏层
        nn.ReLU(),
        # 在第二个全连接层之后添加一个dropout层
        nn.Dropout(dropout2),
        nn.Linear(256, 10))   # 输出层

# 初始化权重,此处不懂可看05softmax回归的简洁实现
def init_weights(m):
    if type(m) == nn.Linear:
        # m.weight默认为0,以均值为0方差为0.01来随机初始化权重
        nn.init.normal_(m.weight, std=0.01)
# net.apply(init_weights)会递归地将函数init_weights应用到父模块的每个子模块submodule,也包括model这个父模块自身。
net.apply(init_weights);

# 参数更新
trainer = torch.optim.SGD(net.parameters(), lr=lr)
# 训练画图
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值