机器学习中的信息量与熵

本文介绍了机器学习中的信息量和熵的概念,包括自信息、互信息、信息熵、联合熵、条件熵、交叉熵和相对熵,并探讨了它们的关系。自信息衡量事件发生的信息量,互信息反映变量间的依赖性,熵则表示不确定性。交叉熵常用于逻辑回归的损失函数,相对熵(KL散度)用于度量概率分布差异。
摘要由CSDN通过智能技术生成

 

我们在学习机器学习算法的时候经常听到自信息、互信息、条件熵、交叉熵等概念。下面为我在学习过程中总结的信息量和熵的相关概念。

信息量:度量的是一个具体事件发生所带来的信息

熵:在结果出来之前对可能产生的信息量的期望——考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望

目录

目录

信息量的相关概念有:自信息、互信息

自信息:I(X)

互信息:I(X;Y)

熵:H(X)

联合熵:H(X,Y)

条件熵:H(X|Y)

交叉熵:H(p,q)

相对熵(KL散度):D(p||q)

信息量和熵的关系



信息量的相关概念有:自信息、互信息

  • 自信息:I(X)

    • 表示一个事件发生后所带来的信息量
    • 概率p(x)越小,x出现的概率就越小,一旦出现所获得的信息量就越大

  • 互信息:I(X;Y)</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值