我们在学习机器学习算法的时候经常听到自信息、互信息、条件熵、交叉熵等概念。下面为我在学习过程中总结的信息量和熵的相关概念。
信息量:度量的是一个具体事件发生所带来的信息
熵:在结果出来之前对可能产生的信息量的期望——考虑该随机变量的所有可能取值,即所有可能发生事件所带来的信息量的期望
目录
目录
信息量的相关概念有:自信息、互信息
-
自信息:I(X)
- 表示一个事件发生后所带来的信息量
- 概率p(x)越小,x出现的概率就越小,一旦出现所获得的信息量就越大
-
互信息:I(X;Y)</