Hive调优篇

1.压缩

  Hive 是基于 Hadoop 的一个数据仓库工具。操作的数据都存储在 hdfs上。 Hive 的本质,就是将 HQL 转化成 MapReduce 程序,运行在 yarn 集群上。此处介绍的压缩,也是基于 Hadoop 的压缩。Hadoop 压缩相关内容,参考:Hadoop压缩(20210609本文还未编写完成,待开放)

  Hive 默认使用MR引擎,Hadoop压缩分为 Map的输出阶段压缩Reduce的输出阶段压缩。 Hive 中如何开启压缩功能呢?

Ⅰ.Map输出阶段压缩

  开启 map 输出阶段压缩,可以减少 job 中 Map 和 Reduce task 间数据传输量。具体配置如下:

1.开启 hive 中间传输数据压缩功能
hive (test)> set hive.exec.compress.intermediate=true;

2.开启 mapreduce 中 map 输出压缩功能
hive (test)> set mapreduce.map.output.compress=true;

3.设置 mapreduce 中 map 输出数据的压缩方式
hive (test)> set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;

4.执行查询语句
hive (test)> select count(*) from db_user;

5.在yarn集群任务日志中查看(是否开启snappy压缩)
在这里插入图片描述
提示:
  在生产中不常用。
  原因:在Map端压缩完成,还需要在 Reduce 端再次解压缩后计算,效率不见得有多高。

Ⅱ.Reduce输出阶段压缩(建议开启)

  当 Hive 将输出写入到表中时,输出内容同样可以进行压缩。属性 hive.exec.compress.output 控制着这个功能。用户可能需要保持默认设置文件中的默认值false, 这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为 true,来开启输出结果压缩功能。

1.开启 hive 最终输出数据压缩功能
hive (test)> set hive.exec.compress.output=true;

2.开启 mapreduce 最终输出数据压缩
hive (test)> set mapreduce.output.fileoutputformat.compress=true;

3.设置 mapreduce 最终数据输出压缩方式
hive (test)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;

4.设置 mapreduce 最终数据输出压缩为块压缩(压缩可按行压缩,按块Block压缩。按块压缩,效率更高点)
hive (test)> set mapreduce.output.fileoutputformat.compress.type=BLOCK;

5.测试输出结果是否是压缩文件(采用insert overwrite local directory 方式,将查询结果导出到本地)
insert overwrite local directory '/opt/module/hive/export/user' select * from db_user;

6.查看输出文件格式
在这里插入图片描述

2.文件存储格式(建议开启)

  Hive 支持的存储数据的格式主要有:TEXTFILE(默认)SEQUENCEFILEORCPARQUET

Ⅰ.行存储 & 列存储

TEXTFILESEQUENCEFILE行式存储ORCPARQUET列式存储

1.行存储的特点
  查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。

2.列存储的特点
  因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。

提示:
  生产环境,列式存储用的更多一些。因此不推荐使用 select * 方式

Ⅱ.TextFile 格式

  默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合 Gzip、Bzip2 使用,但使用 Gzip 这种方式,hive 不会对数据进行切分,从而无法对数据进行并行操作。

Ⅲ.Orc 格式

  Orc (Optimized Row Columnar)是 Hive 0.11 版里引入的新的存储格式。原理相关此处不作介绍,请自行了解。

提示:
 生产环境使用 Orc 格式是比较普遍的。
 相比Textfile、Parquet格式,Orc格式存储占用空间最少,查询速度这3种差不多。

Ⅳ.Parquet 格式

  Parquet 文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此 Parquet 格式文件是自解析的。原理相关此处不作介绍,请自行了解。

Ⅴ.如何指定表存储格式

  参考:Hive DDL数据定义语言 (2.1 建表语句)。在创建表时,可以通过 stored as xxx 来指定存储格式,默认为 textfile。

# orc格式
create table xxx(
...
)
stored as orc;
tblproperties("orc.compress"="NONE"); -- 设置 orc 存储不使用压缩

# parquet格式
create table xxx(
...
)
stored as parquet;

Ⅵ.存储使用空间 & 查询速度 对比

   ORC 格式默认使用了压缩。Parquet 则没有使用压缩。所以在建 orc 表时,通过 tblproperties("orc.compress"="NONE") 方式指定orc不使用压缩。

  如果向 orc 格式表中,通过 load 方式装载数据,因为文件格式的问题,是会报错的。报错信息:The file that you are trying to load does not match the file format of the destination table。如果需要将数据导入到表中,则需要 insert into table xxx select * from table 语句,通过走 MR 的方式导入。

此处不截图了,直接上结果。(文件大小:13.18M)

textfile 默认格式,压缩未启用,占用空间 13.18M
orc 格式,关闭压缩,占用空间 7.69M (完胜,启用压缩占用空间会更少,默认采用 ZLIB 压缩)
parquet 格式,压缩未启用,占用空间 13.1M

3种格式,查询速度也基本接近。从存储效率来看。ORC 格式更好。

Ⅶ.存储和压缩结合示例

ORC 存储方式压缩的一些参数:
在这里插入图片描述

注意:图中所有关于 ORC 的参数都是在 HQL 语句的 tblproperties 字段里面出现

直接上数据对比

# orc格式 + zlib压缩
create table xxx(
...
)
stored as orc;
tblproperties("orc.compress"="ZLIB"); 

# orc格式 + snappy压缩
create table xxx(
...
)
stored as orc;
tblproperties("orc.compress"="SNAPPY"); 

# parquet格式 + snappy压缩
create table xxx(
...
)
stored as parquet;
tblproperties("orc.compress"="SNAPPY"); 

结果:
  orc格式 + zlib压缩,压缩后 2.78M
  orc格式 + snappy压缩,压缩后 3.75M
  parquet格式 + snappy压缩,压缩后 6.39M

备注:
  zlib 比 snappy 压缩的还小。原因是 zlib 采用的是 deflate 压缩算法。比 snappy 压缩的压缩率高。在实际的项目开发当中,hive 表的数据存储格式一般选择:orc 或 parquet。压缩方式一般选择 snappy,lzo。

3.Explain 查看SQL执行计划

MR 任务最多可以跑 7 天,超时就不会再跑了。有任务执行了较长时间的,可以通过 explain 查看 SQL 执行计划

基本语法:
  EXPLAIN [EXTENDED | DEPENDENCY | AUTHORIZATION] query

extended 参数会更详细点,一般使用 explain 即可。

hive (test)> explain select count(*) from db_user;
OK
Explain
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 depends on stages: Stage-1

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: db_user
            Statistics: Num rows: 1 Data size: 1830 Basic stats: COMPLETE Column stats: COMPLETE
            Select Operator
              Statistics: Num rows: 1 Data size: 1830 Basic stats: COMPLETE Column stats: COMPLETE
              Group By Operator
                aggregations: count()
                mode: hash
                outputColumnNames: _col0
                Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE
                Reduce Output Operator
                  sort order: 
                  Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE
                  value expressions: _col0 (type: bigint)
      Execution mode: vectorized
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          mode: mergepartial
          outputColumnNames: _col0
          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE
          File Output Operator
            compressed: true
            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: COMPLETE
            table:
                input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink

Time taken: 11.95 seconds, Fetched: 43 row(s)

4.Fetch 抓取

  Fetch 抓取是指:Hive 中对某些情况的查询可以不必使用 MapReduce 计算。例如:SELECT * FROM employees;在这种情况下,Hive 可以简单地读取 employee 对应的存储目录下的文件,然后输出查询结果到控制台。

  在 hive-default.xml.template 文件中 hive.fetch.task.conversion 默认是 more,老版本 hive 默认是 minimal。该属性修改为 more 以后,在全局查找、字段查找、limit 查找等都不走 mapreduce。

<property>
    <name>hive.fetch.task.conversion</name>
    <value>more</value>
    <description>
      Expects one of [none, minimal, more].
      Some select queries can be converted to single FETCH task minimizing latency.
      Currently the query should be single sourced not having any subquery and should not have
      any aggregations or distincts (which incurs RS), lateral views and joins.
      0. none : disable hive.fetch.task.conversion
      1. minimal : SELECT STAR, FILTER on partition columns, LIMIT only
      2. more    : SELECT, FILTER, LIMIT only (support TABLESAMPLE and virtual columns)
    </description>
</property>

none:不启用 fetch 抓取。所有读取 hdfs 数据的操作,都需要走 MR;
minimal:在 select *分区字段过滤使用 limit 字段,这 3 种操作时不走 MR
more:在 select 字段、filter 过滤、limit 字段、随机抽样、虚拟字段(别名) 时,不会走 MR

1.把 hive.fetch.task.conversion 设置成 none,然后执行查询语句,都会执行 mapreduce 程序。

hive (default)> set hive.fetch.task.conversion=none;
hive (default)> select * from emp;
hive (default)> select ename from emp;
hive (default)> select ename from emp limit 3;

2.把 hive.fetch.task.conversion 设置成 more,然后执行查询语句,如下查询方式都不会执行 mapreduce 程序。

hive (default)> set hive.fetch.task.conversion=more;
hive (default)> select * from emp;
hive (default)> select ename from emp;
hive (default)> select ename from emp limit 3;

5.本地模式(建议开启)

  大多数的 Hadoop Job 是需要 Hadoop 提供的完整的可扩展性来处理大数据集的。不过,有时 Hive 的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际 job 的执行时间要多的多。对于大多数这种情况,Hive 可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。

  在运行 MR 时,有 local 模式 和 yarn 集群模式。MR 执行的任务以 job_xxx 开头,如果选择本地模式运行,任务则是以 job_local 开头。开启本地模式后,本地模式相当于一个单机模式,对于数据量会有限制。在满足配置的条件情况下,使用本地模式。如果数据量大了的话,即使开了本地模式,也不满足本地模式运行条件,也不能够在本地运行。这其实就是一个动态管理的过程。

本地模式,默认是关闭的!!!

用户可以通过设置 hive.exec.mode.local.auto 的值为 true,来让 Hive 在适当的时候自动启动这个优化

// 开启本地 mr
set hive.exec.mode.local.auto=true;

// 设置 local mr 的最大输入数据量,当输入数据量小于这个值时采用 local mr 的方式,默认为 134217728,即 128M
set hive.exec.mode.local.auto.inputbytes.max=50000000;

// 设置 local mr 的最大输入文件个数,当输入文件个数小于这个值时采用 local mr 的方式,默认为 4
set hive.exec.mode.local.auto.input.files.max=10;

开启本地模式图示:
在这里插入图片描述

6.表与表Join优化

Ⅰ.小表 Join 大表

  在 Hadoop 中完成一大一小两表 Join 操作,有 Reduce JoinMap Join 两种方式。在 Hadoop 中推荐使用 Map Join,Map Join 会将小表缓存到内存中,然后慢慢的去加载大表中的数据,参考:Hadoop 中的 Map Join 和 Reduce Join

优化:
  新版本(本次使用的是Hive 3.1.3)的 hive 已经对小表 JOIN 大表和大表 JOIN 小表进行了优化。小表放在左边和右边已经没有区别

开启 MapJoin 参数设置

1.设置自动选择 Mapjoin
set hive.auto.convert.join = true; 默认为 true

2.大表小表的阈值设置(默认 25M 以下认为是小表)
set hive.mapjoin.smalltable.filesize = 25000000;

备注:
  参数的设置,根据集群资源进行配置。如果配置特别高,大表小表阈值可以设置的高点;如果配置小,小表设置为500M。还啥也没干就已经占了500M内存了。。。

Ⅱ.大表 Join 大表

1.空 key 过滤

  Map join 小表 join 大表时,explain看到会自动对空 key 过滤。如果是 left join,空 key 就都要保留。空 key过滤只适合非 inner join,Inner join 会自动将空 key 过滤。
在这里插入图片描述

测试不过滤空 id
hive (default)> insert overwrite table jointable select n.* from nullidtable n left join bigtable o on n.id = o.id;

测试过滤空 id(过滤 id is not null 后再 left join)
hive (default)> insert overwrite table jointable select n.* from (select * from nullidtable where id is not null) n left join bigtable o on n.id =o.id;

2.空 key 转换

  有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的 reducer 上。

数据倾斜问题:
  如果空值特别多,并且不做转换,在 reduce 阶段,空值 会进入到一个 reduce 中,可能导致数据倾斜问题!!!

案例实操:

1.不随机分布空 null 值:

①设置 5 个 reduce 个数
set mapreduce.job.reduces = 5;

②JOIN 两张表

insert overwrite table jointable
select 
   n.* 
from 
   nullidtable n 
	left join bigtable b on n.id = b.id;

结果: 如下图所示,可以看出来,出现了数据倾斜,某些 reducer 的资源消耗远大于其他 reducer
在这里插入图片描述
2.随机分布空 null 值

①设置 5 个 reduce 个数
set mapreduce.job.reduces = 5;

②JOIN 两张表

insert overwrite table jointable
select 
   n.* 
from 
   nullidtable n 
   full join bigtable o on nvl(n.id,rand()) = o.id;

结果:如下图所示,可以看出来,消除了数据倾斜,负载均衡 reducer 的资源消耗
在这里插入图片描述

3.SMB(Sort Merge Bucket join)(大表join大表,重点)

  使用分桶表 Bucket,也是解决 大表 join 大表 一个很好的方法。

  生产环境中使用分桶表比较少,但是在解决 大表 Join 大表时,却是一个很好的方法。分桶表创建是需要 cluster by ,分几个桶。然后导入数据时,它会根据【字段 hash值%桶数】 。将数据放入不同的文件中。

  两张大表join。数据量太大。两张大表直接 join 效率肯定很差。如果采用 map-reduce 分治思想,先分后合。该如何做呢?

前提条件:
  大表A大表B关联字段为 id分 5 个桶

分桶规则:
  创建分桶表时,桶的个数不要超过可用 CPU 的核数,可以保证所有任务的并行操作。如果分桶过多,导致超过CPU个数,同一个CPU会执行多个task,是串行的。虽然看到两个任务都在跑,其实是在争抢资源。

原理分析:
 1.对大表数据,根据关联字段 id 进行分桶。【能关联到一起的,肯定会分到一个桶,1号桶和2号桶肯定关联不出数据的】
 【大表A】         【大表B】
  id=1,分在1号桶;     id=1,分在1号桶;
  id=2,分在2号桶;     id=2,分在2号桶;
  id=3,分在3号桶;     id=3,分在3号桶;
  id=4,分在4号桶;     id=4,分在4号桶;
  id=5,分在0号桶;     id=5,分在0号桶;
  id=6,分在1号桶;     id=6,分在1号桶; >   …以此类推…        …以此类推…

 2.【0号桶和0号桶进行join】,【1号桶和1号桶进行join】…
最终 join 的结果拼接起来,就是整体 join 的结果。

步骤:

1.创建分桶表 A 和 B,将数据通过load方式导入分桶表(会走MR)

# 创建分桶表A
create table bigtable_buck_A(
...
)
clustered by(id)
sorted by(id) 
into 5 buckets
row format delimited fields terminated by ',';

load data local inpath '/opt/module/data/bigtable' into table bigtable_buck_A;
# 创建分桶表B
create table bigtable_buck_B(
...
)
clustered by(id)
sorted by(id) 
into 5 buckets
row format delimited fields terminated by ',';

load data local inpath '/opt/module/data/bigtable' into table bigtable_buck_A;


2.设置分桶Map Join参数
Ⅰ.开启分桶 map join(强制在Map端做bucket join,默认为false)
hive(test) > set hive.optimize.bucketmapjoin = true;
Ⅱ.开启桶排序归并
hive(test) > set hive.optimize.bucketmapjoin.sortedmerge = true;
Ⅲ.设置hive input输入类型
hive(test) > set hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;

3.两个大表join语句

insert overwrite table jointable
select 
   b.id, 
   b.t,
   b.uid,
   b.keyword,
   b.url_rank, 
   b.click_num, 
   b.click_url
from 
   bigtable_buck_A s
   join bigtable_buck_A b on b.id = s.id;


4.测试结果
 两个大表,直接join,用时 88s
 分桶 join,用时 49s。全局且只有一个 MR 任务,5个 Mapper

 Bucket Map Join 案例:https://www.iteye.com/blog/superlxw1234-1545150

备注:
  数据量小时,任务的启动和关闭就会占用比较长的时间,效果不明显。
  如果数据量大,效果会更加明显。

提示:
  分桶表在生产环境中,一般是不会创建的。只有在两个表特别大的情况下,大表join时才会去创建分桶表。

7.Group By

  默认情况下,Map 阶段同一 Key 数据分发给一个 reduce,当一个 key 数据过大时就倾斜了。
在这里插入图片描述  并不是所有的聚合操作都需要在 Reduce 端完成,很多聚合操作都可以先在 Map 端进行部分聚合,最后在 Reduce 端得出最终结果。

Ⅰ.开启 Map 端聚合参数设置

1.是否在 Map 端进行聚合,默认为 true
set hive.map.aggr = true;

2.在 Map 端进行聚合操作的条目数目
set hive.groupby.mapaggr.checkinterval = 100000;

3.有数据倾斜的时候进行负载均衡(默认是 false)
 这个参数并不是都设置true就好。数据过少时,就得不偿失了。生产环境,数据量小根本不用调优,数据量大才需要调优
set hive.groupby.skewindata = true

Ⅱ.Map 端聚合原理

当选项设定为 true,生成的查询计划会有两个 MR Job。

  1. 第一个 MR Job 中,Map 的输出结果会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果。比如:id=1,会变成1-0、1-1、1-2 这种方式,然后随机的分不到不同的 Reduce中,在每个 reduce 中做部分聚合操作】,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;
  2. 第二个 MR Job 中, 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

Ⅲ.示例

  比如:有 100w个 id=1 的数据。在 Map 端会进入到一个 reduce 中。开启 map 端 join 后,会以生成随机数的方式,比如10个随机数,则会是1-11-2….,1-10。便会分成10个10w。 1-0 10w1-1 10w。每个 10w 都一次聚合。

  第一个MR任务,将数据分发到10个reduce中,这10个 reduce 返回 10 个数据。为了拿到最终的结果。MR 会再启动一个任务,将随机数去掉,再次去聚合,获得最终的结果。

Ⅳ.总结

  Map 端聚合,在数据量小时,得不偿失。解决数据倾斜,用两个任务绝对划算。如果任务倾斜严重,任务就压根是没法跑起来的。任务完成时间,是看最慢的任务的完成时间。

  对于Yarn这种架构。发生数据倾斜后,一个任务长时间不完成,Yarn一旦任务申请资源后,其他任务是用不了这部分资源的。

8.Count(Distinct) 去重统计

  当数据量小的时候无所谓,数据量大的情况下,由于 count distinct 操作需要用一个 reduce task 来完成,这一个 reduce 需要处理的数据量太大,就会导致整个 Job 很难完成。

做去重,还要并行去重。该怎么办呢?

  思路分析:数量大时,不会使用 count(distinct id) 来去重,而是使用 group by 来去重。Group by 也可以做去重操作。 Group by 在map阶段会将id设置为 key。将id 放到不同的reducer,每个reducer各自去重,然后合并,就是最终的结果。比如设置 reducer = 5,就可以实现并行的去重!!!

  解决方式:一般 count distinct 使用先 group by 再 count 的方式替换,但是需要注意 group by 造成的数据倾斜问题(数据倾斜问题,参考本文 7 中的开启Map端聚合)。 eg:select count(id) from (select id from bigtable group by id) a;

1.设置 5 个 reduce 个数
set mapreduce.job.reduces = 5;

2.执行去重 id 查询

hive (default)> select count(distinct id) from bigtable;
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 7.12 sec HDFS Read:120741990 HDFS Write: 7 SUCCESS
Total MapReduce CPU Time Spent: 7 seconds 120 msec
OK
c0
100001
Time taken: 23.607 seconds, Fetched: 1 row(s)

3.采用 group by 去重 id

hive (default)> select count(id) from (select id from bigtable group by id) a;
Stage-Stage-1: Map: 1 Reduce: 5 Cumulative CPU: 17.53 sec HDFS Read:120752703 HDFS Write: 580 SUCCESS
Stage-Stage-2: Map: 1 Reduce: 1 Cumulative CPU: 4.29 sec2 HDFS Read:9409 HDFS Write: 7 SUCCESS
Total MapReduce CPU Time Spent: 21 seconds 820 msec
OK
_c0
100001
Time taken: 50.795 seconds, Fetched: 1 row(s)

提示:
  group by 这种方式去重,虽然会多用一个 Job 来完成任务,数据量少时,你会发现用时更多。但是在数据量大的情况下,这个绝对是值得的

9.笛卡尔积

  尽量避免笛卡尔积,join 的时候不加 on 条件,或者无效的 on 条件,Hive 只能使用 1 个 reducer 来完成笛卡尔积。

笛卡尔积出现条件:
 1.连接条件失效;
 2.不存在连接条件时。

提示:
  在严格模式这块,会有一个参数,来禁掉笛卡尔积。如何禁用笛卡尔积,参考本文:14.3 严格模式【笛卡尔积】

10.行列过滤

列过滤:
  在 SELECT 中,只拿需要的列,如果有分区,尽量使用分区过滤,少用 SELECT *。

行过滤:
  在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在 Where 后面, 那么就会先全表关联,之后再过滤

示例:

1.先关联两张表,再用 where 条件过滤

hive (default)> 
select 
   o.id 
from 
   bigtable b join bigtable o on o.id = b.id
where 
   o.id <= 10;
Time taken: 34.406 seconds, Fetched: 100 row(s)

2.通过子查询后,再关联表

hive (default)> 
select 
   b.id 
from 
   bigtable b join (
       select 
           id 
       from 
           bigtable 
       where 
           id <= 10
   ) o on b.id = o.id;
Time taken: 30.058 seconds, Fetched: 100 row(s

【先过滤,再关联】使用有一个条件:
  join on 的条件 和 where 筛选的条件字段要一致时,可以进行优化。如果join 和 where不是一个字段,则没法优化了

此处涉及到一个谓词下推的概念

  谓词下推,就是在将过滤条件下推到离数据源更近的地方,最好就是在table_scan时就能过滤掉不需要的数据,在关系代数中谓词是可以左右上下移动的,由于join查询的特殊性,在优化 join condition 中的谓词时,对应不同的 join 类型,有不同的策略。

手动过滤,再去join。相当于是手动对其进行谓词下推。

11.分区、分桶

  存储方面的优化,更多的分区,是在读数据时用到的分桶则更多的用到大表 join。这部分内容,参考:Hive 分区表 & 分桶表

12.合理设置 Map 及 Reduce 数

1.通常情况下,作业会通过 input 的目录产生一个或者多个 map 任务
  主要的决定因素有:input 的文件总个数input 的文件大小集群设置的文件块大小

2.是不是 map 数越多越好?
  答案是否定的。如果一个任务有很多小文件(远远小于块大小 128m),则每个小文件也会被当做一个块,用一个 map 任务来完成,而一个 map 任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的 map 数是受限的。

3.是不是保证每个 map 处理接近 128m 的文件块,就高枕无忧了?
  答案也是不一定。比如有一个 127m 的文件,正常会用一个 map 去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果 map 处理的逻辑比较复杂,用一个 map任务去做,肯定也比较耗时。

针对上面的问题 2 和 3,我们需要采取两种方式来解决:即减少 map 数和增加 map 数;

12.1 复杂文件增加 Map 数

  当 input 的文件都很大,任务逻辑复杂,map 执行非常慢的时候,可以考虑增加 Map 数,来使得每个 map 处理的数据量减少,从而提高任务的执行效率。

  增加 map 的方法为:根据 computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M公式,
调整 maxSize 最大值。让 maxSize 最大值低于 blocksize 就可以增加 map 的个数。

案例实操:

1.执行查询

hive (default)> select count(*) from emp;
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1

2.设置最大切片值为 100 个字节(注意是字节哦,此处文件小的原因)

hive (default)> set mapreduce.input.fileinputformat.split.maxsize=100;
hive (default)> select count(*) from emp;
Hadoop job information for Stage-1: number of mappers: 6; number of reducers: 1

12.2 小文件进行合并

注意:
小文件在生产上还是比较严重的,存储会占用 namenode 内存,计算任务时,每一个小文件会独立启动一个Map任务,浪费资源。**

1. 在 map 执行前合并小文件,减少 map 数:

  CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat 没有对小文件合并功能。

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

2. 在 Map-Reduce 的任务结束时合并小文件的设置:

①在 map-only 任务结束时合并小文件,默认 true
SET hive.merge.mapfiles = true;

②在 map-reduce 任务结束时合并小文件,默认 false
SET hive.merge.mapredfiles = true;

③合并文件的大小,默认接近256M
SET hive.merge.size.per.task = 256000000;

④当输出文件的平均大小小于该值时,启动一个独立的 map-reduce 任务进行文件 merge
SET hive.merge.smallfiles.avgsize = 16000000;

12.3 合理设置 Reduce 数

1.调整 reduce 个数方法一

1.每个 Reduce 处理的数据量默认是 256MB
hive.exec.reducers.bytes.per.reducer=256000000

2.每个任务最大的 reduce 数,默认为 1009
hive.exec.reducers.max=1009

3.计算 reducer 数的公式
N=min(参数 2,总输入数据量/参数 1)

2.调整 reduce 个数方法二

在 hadoop 的 mapred-default.xml 文件中修改,设置每个 job 的 Reduce 个数
set mapreduce.job.reduces = 15;

提示:reduce 个数并不是越多越好

  1. 过多的启动和初始化 reduce 也会消耗时间和资源;
  2. 另外,有多少个 reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

在设置 reduce 个数的时候也需要考虑这两个原则:

  1. 处理大数据量利用合适的 reduce 数;
  2. 使单个 reduce 任务处理数据量大小要合适;

合理设置reduce数量,默认值为-1,根据自己的任务来决定需要用到多少个 reduce。

13.并行执行

  有时候我们会发现,Map 阶段并没有执行到 100%,reduce 阶段已经开始运行了。这是为什么呢?

  Hive 会将一个查询转化成一个或者多个阶段。这样的阶段可以是 MapReduce 阶段抽样阶段合并阶段limit 阶段。或者 Hive 执行过程中可能需要的其他阶段。默认情况下,Hive 一次只会执行一个阶段。不过,某个特定的 job 可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个 job 的执行时间缩短。不过,如果有更多的阶段可以并行执行,那么 job 可能就越快完成。

  通过设置参数 hive.exec.parallel 值为 true,就可以开启并发执行。不过,在共享集群中,需要注意下,如果 job 中并行阶段增多,那么集群利用率就会增加。当然,得是在系统资源比较空闲的时候才有优势,否则,没资源,并行也起不来。

set hive.exec.parallel=true; //打开任务并行执行
set hive.exec.parallel.thread.number=16; //同一个 sql 允许最大并行度,默认为8。

14.严格模式

Hive 可以通过设置严格模式,来防止一些危险操作:

14.1 分区表不使用分区过滤

  将 hive.strict.checks.no.partition.filter 设置为 true 时,对于分区表,除非 where 语句中含有分区字段过滤条件来限制范围,否则不允许执行换句话说,就是用户不允许扫描所有分区。进行这个限制的原因是,通常分区表都拥有非常大的数据集,而且数据增加迅速。没有进行分区限制的查询可能会消耗令人不可接受的巨大资源来处理这个表。

提示:
  这个配置一般不开,在生产环境中不是使用太多。有时候也会对分区做全表扫描的。

14.2 使用 order by 没有 limit 过滤

  将 hive.strict.checks.orderby.no.limit 设置为 true 时,对于使用了 order by 语句的查询,要求必须使用 limit 语句。因为 order by 为了执行排序过程会将所有的结果数据分发到同一个Reducer 中进行处理,强制要求用户增加这个 LIMIT 语句可以防止 Reducer 额外执行很长一段时间。

提示:
  Order by 只能使用一个 reducer 全局排序,如果加了limit,hive 对 limit 进行了优化,多个任务的话,比如 limit 2,那么每一个Map任务都会输出最大的2条,然后将所有map的输出,放到一个reducer中,重新排序。

14.3 笛卡尔积

  将 hive.strict.checks.cartesian.product 设置为 true 时,会限制笛卡尔积的查询。

  对关系型数据库非常了解的用户可能期望在执行 JOIN 查询的时候不使用 ON 语句而是使用 where 语句,这样关系数据库的执行优化器就可以高效地将 WHERE 语句转化成那个 ON 语句。不幸的是,Hive 并不会执行这种优化,因此,如果表足够大,那么这个查询就会出现不可控的情况

15. JVM 重用

  JVM重用,在小文件中会用到。如果不启用 CombinerInputFormat,就是用普通的 TextInputFormat,每一个小文件都去启动一个Map任务。在MR中,不管 Map 还是 Reduce 任务,都是一个Java进程(YarnChild)。通过 jps可看到。

  每启动一个进程,都需要向 Java 虚拟机申请,当任务运行完后,还要释放掉。比如说申请1s任务处理 0.5s释放1s。显得尤为不值当,时间都浪费在申请、释放资源上,所以采用 JVM 重用。(开启 uber 模式,实现 JVM 重用)

JVM 重用,参考:Hadoop生产调优篇—>10.1.2 Hadoop 小文件解决方案


本套 Hive 调优教程,出自xxxxxx,本文用作备份,方便个人查阅使用

原文档所在地址:

链接:https://pan.baidu.com/s/1vidVcXDIRgXfy-_P199Qpw (提取码:u52v )

  • 5
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扛麻袋的少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值