原码、反码、补码最初是针对负数设计的

本文解析了正数情况下原码、反码、补码与其本身的关系,并解释了为何补码加原码等于2的n次方仅适用于负数。对于正数,由于不需要转换,因此其原码、反码、补码均与其本身相同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:在正数情况下,原码、反码、补码都是它本身,对吗?但是这与补码加原码恰好等于2n次方矛盾呀?

解答:原码、反码、补码最初是针对负数设计的,其目的是为了在数字电路中用加法实现减法运算,故需要将负数先转换成其补码形式,先利用数字电路中加法器进行运算,再将运算结果转换成对应的数(正数不变,负数再求补),这样就可以用数字电路中加法器实现减法运算。我们所说的补码加原码恰好等于2n次方是针对负数而言,对正数,计算时不需要进行反码、补码转换,所以我们规定其原码、反码、补码都是它本身,所以补码加原码恰好等于2n次方对正数就不适用了。

### 负数原码反码补码计算 对于负数而言,字长为8位的情况下: - **原码**:首位为1表示这是个负数。剩余7位代表绝对值的二进制形式[^1]。 例如,给定一个十进制数 `-9` ,其对应的二进制表示(不考虑符号)是 `0000 1001` 。因此,这个数作为负数时的原码就是 `1000 1001` [^1]。 - **反码**:保持符号位即第一位不变,其他各位按位取反。基于上述例子中的原码 `1000 1001` ,将其除符号位外的部分每一位都反转,则得到反码 `1111 0110` 。 - **补码**:在获得反码之后,在此基础上1来获取补码。继续沿用之前的实例,对反码 `1111 0110` 上1的结果便是补码 `1111 0111` [^2]。 值得注意的是特殊情况下,比如最小可表达整数 `-128` 的情况,它只有补码形式 `1000 0000` 存在于一字节范围内,并无有效的原码反码对应。 ```python def get_complement(value, bit_length=8): if value >= 0: return format(value, '0' + str(bit_length) + 'b') original_code = ('1' + bin(abs(value))[2:].zfill(bit_length - 1))[-bit_length:] inverted_bits = ''.join(['1' if b == '0' else '0' for b in original_code[1:]]) one_complement = '1' + inverted_bits two_complement_int = int(one_complement, 2) + 1 two_complement_bin = format(two_complement_int & ((1 << bit_length) - 1), '0' + str(bit_length) + 'b') return { "original": original_code, "one's complement": '1' + inverted_bits, "two's complement": two_complement_bin } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值