Coursera machiine learning(第二周)

 这一周要用octave,一个类matlab软件。在学习操作上看一次coursera的教程并不能都记住。记不住没关系,不用当场反复看。我的经验是到了要用的时候可以从它原有的作业代码上学,再不行才倒回去重看octave的操作教程https://www.coursera.org/learn/machine-learning/lecture/9fHfl/basic-operation

这周的内容:
     a.multiple gredient descent (多元的梯度下降方法:用于最小化multiple costfuntion)
 b.feature scaling(特征放缩,用于多元函数h(x1,x2,x3,x4,...,xn),
        平均各元(x1~n)对函数h(x)最终值的影响力)
 c.normal equation(其实是最小二乘法,可求解一个无解方程组的最优解)

tips:第二周的作业中,要算gredient descent。按照他原本来说我们要写一个for循环然后

一个一个把theta[i]算出来,再组成一个一维向量theta。 但是我们利用矩阵的运算方式可以

把过程简化为: 

 theta=theta - alpha/m*(X')*(X*theta - y);



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值