这一周要用octave,一个类matlab软件。在学习操作上看一次coursera的教程并不能都记住。记不住没关系,不用当场反复看。我的经验是到了要用的时候可以从它原有的作业代码上学,再不行才倒回去重看octave的操作教程https://www.coursera.org/learn/machine-learning/lecture/9fHfl/basic-operation
这周的内容:
a.multiple gredient descent (多元的梯度下降方法:用于最小化multiple costfuntion)
b.feature scaling(特征放缩,用于多元函数h(x1,x2,x3,x4,...,xn), 平均各元(x1~n)对函数h(x)最终值的影响力)
c.normal equation(其实是最小二乘法,可求解一个无解方程组的最优解)
tips:第二周的作业中,要算gredient descent。按照他原本来说我们要写一个for循环然后
一个一个把theta[i]算出来,再组成一个一维向量theta。 但是我们利用矩阵的运算方式可以
把过程简化为:
theta=theta - alpha/m*(X')*(X*theta - y);