[C++ 学习笔记] FHQ-Treap (无旋 Treap)

1. 基本知识


1.1 Treap

Treap(树堆) 是一种弱平衡二叉搜索树,每个节点的权值具有二叉搜索树的性质,优先级具有堆的性质

具体来说,树堆满足如下性质

  • 左子结点的权值小于根节点的权值
  • 右子节点的权值大于根节点的权值
  • 子节点的优先级(注意,不是权值!)都大于/都小于根节点的优先级(取决于大根堆/小根堆)

如下图即为一个 Treap 的例子(采用小根堆)——

注:黑色数字为权值,棕色数字为优先级

为什么相较于 BST,需要对每个节点多维护一个优先级?

对每个节点,维护满足堆性质的优先级,是为了保证树尽量平衡:

对于一棵 每层节点较多 的二叉搜索树,查找时需要递归的次数便较小,复杂度为 \log_{2} n

反之,退化成一条链 是二叉搜索树的最坏情况,此时查找所需复杂度为线性,而优先级的设置便防止了这种情况的出现

1.2 FHQ-Treap

FHQ-Treap 又称分裂合并 Treap,无须旋转,只需支持分裂合并两种基本操作

FHQ-Treap 支持可持久化和区间操作,但此处仅介绍基本操作

2. 初始化 FHQ-Treap


在 FHQ-Treap 的节点上维护如下属性与方法(采用指针式):

  1. 左右子节点的地址
  2. 当前节点的权值
  3. 当前节点的优先级
  4. 当前节点的出现次数
  5. 当前节点的子树大小
  6. 重新计算子树大小的方法

于是可以得到节点的代码:

struct Node {
	Node *ch[2];    // 左右孩子的指针
	int val;    // 权值
	int rank;    // 优先级
	int rep_cnt;    // 出现次数
	int siz;    // 子树大小

	Node (int _val) : val(_val), rep_cnt(1), siz(1) {    // 构造函数
		ch[0] = ch[1] = nullptr;
		rank = rand();    // 随机取优先级
	}

	void upd_siz() {    // 重新计算子树大小的方法
		siz = rep_cnt;

		if (ch[0] != nullptr) {
			siz = siz + ch[0]->siz;    // 加上左子树的大小
		}

		if (ch[1] != nullptr) {
			siz = siz + ch[1]->siz;    // 加上右子树的大小
		}
	}
};

3. 分裂


3.1 按值分裂

分裂过程接收 根节点的指针 关键值 两个参数,返回两个指针,分别指向分裂后的 两个 Treap,第一个 Treap 所有节点的值小于等于关键值,第二个 Treap 所有节点的值大于关键值

对于要分裂的关键值 (key),大致分裂思路如下:

  1. 首先比较根节点的值与关键值
  2. 如果根节点的值小于等于关键值,说明根节点及其左子树上的所有节点均小于等于关键值,而此时根节点的右子树上仍可能有节点小于等于关键值,因此递归分裂右子树 (结果记为 temp),再将当前根节点的右孩子指向 temp.first,最终返回根节点的指针与temp.second
  3. 如果根节点的值大于关键值,说明根节点及其右子树上的所有节点均大于关键值,而此时根节点的左子树上仍可能有节点大于关键值,因此递归分裂左子树 (结果记为 temp),再将当前根节点的左孩子指向 temp.second,最终返回 temp.first 与根节点的指针

于是可以得到按值分裂的代码:

pair<Node *, Node *> split(Node *root, int key) {    // 根节点指针,关键值
    if (root == nullptr) {    // 当前节点不存在
		return {nullptr, nullptr};
	}

	if (root->val <= key) {    // 根节点的值小于等于关键值
		auto temp = split(root->ch[1], key);    // 递归分裂右子树
		root->ch[1] = temp.first;
		root->upd_siz();    // 别忘了更新子树大小
		return {root, temp.second};
	} else {    // 根节点的值大于关键值
		auto temp = split(root->ch[0], key);    // 递归分裂左子树
		root->ch[0] = temp.second;
		root->upd_siz();    // 别忘了更新子树大小
		return {temp.first, root};
	}
}

3.2 按排名分裂

排名定义为,比当前权值小的权值的个数 +1(注意重复的也算哦)

分裂过程接收 根节点的指针排名

<think>嗯,用户想了解FHQ-Treap的空间优化方法。首先,我得回忆一下FHQ-Treap的基本结构。FHQ-Treap也就是非Treap,它通过分裂和合并操作来维护平衡,不需要转,所以代码相对简单,还能支持可持久化。那空间优化方面,用户可能遇到节点过多导致内存占用大的问题,需要找优化方法。 根据引用[2],FHQ-Treap相比Splay虽然常数大,但实现容易,还能可持久化。可持久化通常会占用更多空间,但用户问的是空间优化,所以可能需要减少节点数量或重用节点。 首先想到的是节点复用。比如删除节点时,不是立即释放内存,而是加入一个缓存池,需要时再取出。这样可以避免频繁申请内存的开销,尤其在多次插入删除的情况下。这种方法在很多数据结构中都有应用,比如内存池技术。 然后是动态分配策略。比如根据操作频率调整节点预分配的数量,高频使用时多分配,低频时减少。不过具体如何实现可能需要进一步思考,比如初始分配一定数量的节点,当不够时再批量申请,而不是每次插入都申请新节点。 还有延迟回收技术。删除节点后不立即回收,而是标记为无效,后续操作中复用。这需要维护一个无效节点列表,并在需要时进行清理或复用。不过要注意避免内存泄漏,可能需要定期清理。 另外,引用[5]提到使用虚节点来优化合并操作,虽然主要是针对并查集,但或许可以借鉴。比如在FHQ-Treap中,是否有类似虚节点的设计,减少结构中的辅助节点数量?或者通过某些方式共享部分结构,比如持久化时的路径复用,但用户可能指的是常规优化而非可持久化场景。 还有,合并操作的优化可能减少临时节点的使用。比如在合并过程中尽量复用现有节点,而不是创建中间节点。不过这可能需要调整合并算法的实现细节。 还需要考虑Treap本身的特性,比如优先级。如果优先级生成策略可以优化,比如使用哈希或更紧凑的存储方式,减少存储开销。例如,使用较小的数据类型存储优先级,或者用伪随机数生成器避免存储全部优先级。 另外,内存对齐和紧凑的节点结构设计也很重要。比如将节点的键、优先级、左右子指针紧凑排列,减少内存碎片,或者使用更小的数据类型。例如,如果键的范围允许,使用int而非long来存储。 可能还需要分析FHQ-Treap的具体实现,比如每个节点通常包含哪些字段。通常有key, priority, left, right,可能还有size。如果size可以动态计算而不存储,但这样会影响性能,需要权衡。 总结可能的优化点: 1. 节点复用与缓存池 2. 延迟回收和批量分配 3. 紧凑的节点结构设计 4. 动态调整预分配策略 5. 优化优先级存储 6. 合并/分裂时的临时节点复用 需要将这些方法具体化,给出实际的技巧,比如如何实现缓存池,如何设计节点结构等。同时要确保这些方法适用于FHQ-Treap的特性,比如非转和分裂合并操作。 比如,节点池的实现:预先分配一个节点数组,用栈或队列管理空闲节点。插入时从池中取节点,删除时将节点放回池中。这样减少内存分配次数,提高效率,同时控制内存占用。 紧凑结构方面,可以用union或者位域来压缩字段,但可能增加访问复杂度。或者根据具体情况选择合适的数据类型,比如用32位整数代替64位。 优先级生成方面,如果使用随机数,可以存储种子而不是每个节点的优先级,但Treap需要每个节点有唯一的优先级,所以可能不可行。或者使用哈希函数生成优先级,减少存储空间,比如用较低的位数。 延迟回收的话,维护一个删除列表,当需要新节点时先检查列表,有则复用,无则新建。但要注意节点信息的正确重置。 可能还需要注意可持久化时的优化,但用户的问题可能是一般情况下的空间优化,所以重点放在常规方法上。 最后,给出具体的优化技巧,结合实现示例,比如代码中的节点池管理,或者结构体设计。同时引用相关参考资料,比如引用[2]提到FHQ可用于可持久化,可能涉及节点复用;引用[5]的虚节点思路是否有借鉴意义。</think>### FHQ-Treap 空间优化技巧详解 FHQ-Treap(非Treap)通过分裂与合并操作实现平衡树功能,其非特性使得可持久化成为可能[^2]。以下是针对空间优化的具体技巧及实现方法: --- #### 1. **节点复用与缓存池** **核心思路**:避免频繁的内存分配/释放,通过预分配和复用节点减少系统调用开销。 - **实现方法**: - **预分配节点池**:初始化时批量申请内存(如数组或链表),维护空闲节点列表。 - **删除节点缓存**:删除操作时将节点标记为“无效”并加入缓存池,插入时优先使用缓存节点。 ```python class NodePool: def __init__(self, chunk_size=1024): self.free_list = [] self.allocate_chunk(chunk_size) def allocate_chunk(self, size): new_nodes = [Node() for _ in range(size)] self.free_list.extend(new_nodes) def get_node(self): if not self.free_list: self.allocate_chunk() # 按需扩容 return self.free_list.pop() def recycle_node(self, node): node.left = node.right = None self.free_list.append(node) ``` --- #### 2. **延迟回收与批量清理** **应用场景**:高频插入/删除操作中,减少即时回收的开销。 - **优化策略**: - 标记节点为“逻辑删除”(如设置 `deleted` 标志),定期批量清理。 - 合并操作时跳过无效节点,减少物理删除次数[^3]。 --- #### 3. **紧凑型节点结构设计** 通过压缩字段节省内存: - **数据类型优化**:根据数据范围选择最小类型(如 `int32` 代替 `int64`)。 - **合并字段**:使用联合体(Union)存储互斥数据(如可持久化版本号与子指针)。 ```c++ struct CompactNode { int32_t key; uint16_t priority; // 使用更小的随机数范围 union { struct { CompactNode *left, *right; }; int32_t version; // 可持久化场景下的版本号 }; }; ``` --- #### 4. **动态优先级生成** **避免存储显式优先级**:通过哈希函数生成优先级,减少存储开销。 - **公式**:`priority = hash(key) % MAX_PRIORITY` - **优点**:无需额外字段存储优先级,但需保证优先级分布近似随机性。 --- #### 5. **可持久化场景优化** **虚节点技术**:参考并查集虚点思想[^5],将频繁修改的子树映射到独立内存区域。 - **实现**:为每个节点绑定虚节点,合并/分裂操作仅修改虚节点,减少真实节点的变更次数。 --- #### 6. **合并/分裂操作优化** 减少临时节点生成: - **原地修改**:合并时直接调整指针而非创建新节点。 - **栈式分裂**:分裂过程中复用中间节点(需严格保证线程安全)。 --- ### 关键权衡与注意事项 | 优化方法 | 优点 | 缺点 | |------------------|--------------------------|-------------------------------| | 节点池 | 减少内存碎片 | 预分配可能浪费内存 | | 延迟回收 | 降低高频操作开销 | 内存占用短期增加 | | 紧凑结构 | 节省单节点空间 | 代码复杂度增加 | | 动态优先级 | 无需存储优先级字段 | 哈希冲突可能影响平衡性 | --- ### 相关问题 1. **如何验证节点池优化后的内存使用效率?** 2. **FHQ-Treap 在可持久化场景中如何避免内存泄漏?** 3. **紧凑节点结构对分裂/合并操作性能有何影响?** : FHQ-Treap 的非特性使其适合可持久化优化。 : 延迟回收技术可借鉴滑动窗口的复用思想。 [^5]: 虚节点技术常用于减少真实数据结构的修改频率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值