无旋treap BZOJ 3223 文艺平衡树
开始1到N个数有序排列,M次操作,每次翻转一个区间,原始序列经过m次变换后结果
例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1
样例输入 Sample Input
5 3
1 3
1 3
1 4
样例输出 Sample Output
4 3 2 1 5
#include <bits/stdc++.h>
using namespace std;
#define L ch[now][0]
#define R ch[now][1]
#define mid ((l+r)>>1)
typedef pair <int,int> p;
const int N = 100010;
int n,m,rt;//N个点,M个操作,记住L,R是左右儿子结点,MID是当前区间一半
struct treap{//rt根,pos优先级,ch儿子,siz子树结点数,rev翻转标记,key关键字
int rt,pos[N],ch[N][2],siz[N],rev[N],key[N];//N是结点编号
void update(int now) {siz[now]=siz[L]+siz[R]+1;}//当前结点子树结点就是两子树和加自己
void Rev(int now) {swap(L,R);}//交换左右子树
void pushdown(int now) {if(rev[now]) {rev[now]^=1;rev[L]^=1;rev[R]^=1;Rev(L);Rev(R);}}//当前点打了标记,则标记复原,然后左右儿子上标记,然后翻转左右儿子
int merge(int a,int b) {//传入两树根合并
if(a*b==0) return a?a:b;//有一个是空,则A是0就返回B,A不是0就返回A
pushdown(a);pushdown(b);//两个非空就就下压
if(pos[a]<pos[b]) {//A优先级
ch[a][1]=merge(ch[a][1],b);//A的右儿与B合并成为右儿
update(a);//然后更新A
return a;
}else {//B优先级高
ch[b][0]=merge(a,ch[b][0]);//A与B的左儿合并为成左儿
update(b);//更新B
return b;//返回当前子树根就是B
}
}
void split(int now,int num,int &x,int &y) {//现在结点,要分裂的结点排名,分裂后左树根,右树根
if(!now) x=y=0;//当结点为空,即直接XY都是0,注意建树时结点编号在存储时是从1起到N+2,根是1
else {
pushdown(now);//未到空就翻转下压
if(num<=siz[L]) {y=now;split(L,num,x,L);}//当前结点编号小于左子树结点数,当前点是右树根,左树根将在左子树中找到
else {x=now;split(R,num-siz[L]-1,R,y);}//同理
update(now);//回溯更新
}//算法:分裂一来是找到区间对应子树,二来是翻转操作时不会操作到区间外的数!!!
}//此函数的作用就是要得到分裂后两树根
int build(int l,int r) {//建树
if(l==r){pos[l]=rand();siz[l]=1;key[l]=l-1;return l;}//到叶子结点,随机生成优先级,子树结点数为1,关键字为下标-1,即0~N-1
return merge(build(l,mid),build(mid+1,r));//注意是mid与mid+1
}
void print(int now) {//前序遍历每个结点
pushdown(now);//翻转标记下推
if(L) print(L);//有左结点就输出左结点
if(key[now]>=1 && key[now]<=n) printf("%d ",key[now]);//关键字在1~N符合题意就输出
if(R) print(R);//有右结点就输出右结点
}
}t;
int main() {
cin>>n>>m;
rt=t.build(1,n+2);
for(int i=1;i<=m;++i) {
int l,r,a,b,c,d; cin>>l>>r;
t.split(rt,r+1,a,b);//当前树根RT起找到R+1节点分裂,A是左树根,B是右树根
t.split(a,l,c,d);//当前树根A即左树根起找L节点分裂,C是新左树根,B是新右树根,D即为所求区间
t.rev[d]^=1;//打上翻转标记
t.Rev(d);//交换左右子树操作(跟SPLAY一样,找到根间,翻转操作
rt=t.merge(c,t.merge(d,b));//合并新左树根C与
}//首先RT分成AB,然后AB为成CD,所以要对CDB进行合并,且注意左右顺序
t.print(rt);
return 0;
}