前文已写过多篇有关人工智能原理的文章:
(1)人工智能中的线性代数基础详解:人工智能中的线性代数基础详解_线性代数与人工智能-CSDN博客
(2)人工智能的数学基础之逻辑、集合论和模糊理论:人工智能的数学基础之逻辑、集合论和模糊理论_人工智能位置集合-CSDN博客
(3)人工智能的数学基础之概率论与统计学:人工智能的数学基础之概率论与统计学(含示例)_概率统计与人工智能-CSDN博客
(4)人工智能的数学基础之命题逻辑与谓词逻辑:人工智能的数学基础之命题逻辑与谓词逻辑(含示例)_命题逻辑与人工智能语言加工-CSDN博客
目前,人们已经对推理进行了比较多的研究,提出了多种可在计算机上实现的推理方法,其中经典逻辑推理是最先提出的一种。经典逻辑推理是根据经典逻辑(命题逻辑及一阶谓词逻辑)的逻辑规则进行的一种推理,又称为机械-自动定理证明(mechanical-automatic theorem proving),主要推理方法有自然演绎推理、归结演绎推理及与/或形演绎推理等。由于这种推理是基于经典逻辑的,其真值只有“真”和“假”两种,因此它是一种精确推理,或称为确定性推理。
一、什么是推理
推理是人工智能的核心能力,其本质是从已知事实(知识库)出发,通过逻辑规则推导出新结论的过程。王永庆在《人工智能原理与方法》中指出,推理包含三个要素:知识表示(如谓词逻辑、产生式规则)、推理规则(如假言推理、归结原理)和控制策略(如正向推理、反向推理)。
以医疗诊断为例,推理过程可拆解为:
(1)输入:患者症状(发热、咳嗽)、检查结果(肺部阴影)。
(2)知识库:医学知识(如 “发热 + 咳嗽 + 肺部阴影→肺炎”)。
(3)推理规则:应用假言推理(若 A 且 B 则 C)。
(4)输出:诊断结论(肺炎)。
推理的核心价值在于将碎片化的知识转化为可行动的决策,其效率和准确性直接影响 AI 系统的性能。
二、推理方式及其分类
王永庆在书中将推理分为四大类:逻辑结构分类(演绎、归纳、默认)、确定性分类(确定、不确定)、单调性分类(单调、非单调)、启发式分类(启发式、非启发式)。以下从理论到实践展开分析:
(一)逻辑结构分类:从一般到特殊的推理路径
第一个分类是演绎、归纳、默认推理。演绎推理是从一般到个别,如三段论;归纳是从个别到一般,如枚举归纳;默认推理是基于默认假设,如鸟会飞。
1.演绎推理(Deductive Reasoning)
(1)定义:从一般到个别,结论必然蕴含于前提。
(2)示例:
- 大前提:所有哺乳动物都有毛发。
- 小前提:猫是哺乳动物。
- 结论:猫有毛发。
(3)形式化:
∀x (Mammal(x) → HasHair(x))
Mammal(Cat)
⇒ HasHair(Cat)
1)演绎推理过程:
- 定义谓词:Mammal (x)、HasHair (x)。
- 输入事实:Mammal (Cat)。
- 应用规则:∀x (Mammal (x) → HasHair (x))。
- 输出结论:HasHair (Cat)。
2)形式化说明:
- Mammal(x):x是哺乳动物
- HasHair(x):x有毛发
- ∀x (Mammal(x) → HasHair(x)):∀全称量词,所有哺乳动物都有毛发,这是大前提
- Mammal(Cat):猫是哺乳动物,这是小前提
- HasHair(Cat):推理出猫有毛发,这是结论。
(4)应用场景:数学证明、法律条文适用。
(5)局限性:依赖前提的正确性,无法处理新知识。
2.归纳推理(Inductive Reasoning)
(1)定义:从个别到一般,结论具有概率性。
(2)示例:
- 观察:乌鸦 A 是黑色,乌鸦 B 是黑色,...,乌鸦 N 是黑色。
- 结论:所有乌鸦都是黑色。
(3)形式化:
S = {x₁, x₂, ..., xₙ}
∀xᵢ ∈ S, P(xᵢ)
⇒ ∀x P(x)(概率性结论)
(4)应用场景:科学发现、数据挖掘。
(5)局限性:样本偏差可能导致错误结论。
3.默认推理(Default Reasoning)
(1)定义:在知识不完全时,基于默认假设进行推理。
(2)示例:
- 假设:通常情况下,鸟会飞。
- 事实:企鹅是鸟。
- 结论:企鹅会飞(但实际需修正)。
(3)形式化:
默认规则:Bird(x) : Flies(x) / Flies(x)
事实:Bird(Penguin)
结论:Flies(Penguin)(需后续修正)
(4)应用场景:常识推理、自然语言理解。
(5)局限性:默认假设可能被新信息推翻。
(二)确定性分类:处理精确与模糊的世界
第二个分类是确定性与不确定性推理。确定性推理基于精确知识,如数学证明;不确定性推理处理不精确或不完全的信息,如概率推理。
1.确定性推理(Certainty Reasoning)
(1)定义:基于精确知识,结论非真即假。所谓确定性推理是指推理时所用的知识都是精确的,推出的结论也是确定的,其真值或者为真,或者为假,没有第三种情况出现。
(2)示例:
- 知识库:若体温≥38℃,则判定为发热。
- 事实:患者体温 38.5℃。
- 结论:发热(确定)。
(3)形式化:
Temperature ≥ 38℃ → Fever
Temperature = 38.5℃
⇒ Fever
(4)技术实现:
归结演绎推理:将谓词公式化为子句集,通过归结原理证明定理。
流程:
- 转化为子句集:¬(A ∧ B) ∨ C → {¬A ∨ ¬B ∨ C}。
- 应用归结规则:若子句 1 含 A,子句 2 含 ¬A,则归结为子句 1∨子句 2。
(5)应用场景:数学定理证明、电路设计验证。
2.不确定性推理(Uncertainty Reasoning)
(1)定义:处理不精确、不完全或模糊的知识。所谓不确定性推理是指推理时所用的知识不都是精确的,推出的结论也不完全是肯定的,其真值位于真与假之间,命题的外延模糊不清。
(2)示例:
- 知识库:若头痛且流涕,70% 概率为感冒。
- 事实:患者头痛且流涕。
- 结论:感冒(概率 70%)。
(3)技术实现:
贝叶斯网络:
P(Cold | Headache, RunnyNose) = P(Headache, RunnyNose | Cold) * P(Cold) / P(Headache, RunnyNose)
不确定性推理过程(贝叶斯网络):
- 构建网络:头痛→感冒,流涕→感冒。
- 输入概率:P (感冒)=0.1,P (头痛 | 感冒)=0.8,P (流涕 | 感冒)=0.7。
- 计算联合概率:P (感冒 | 头痛,流涕)=0.727。
模糊逻辑:
头痛程度 = 0.8,流涕程度 = 0.6
感冒概率 = min(0.8, 0.6) = 0.6
(4)应用场景:医疗诊断、风险评估。
(三)单调性分类:推理的可扩展性
若按推理过程中推出的结论是否单调地增加,或者说推出的结论是否越来越接近最终目标来划分,推理又分为单调推理与非单调推理。这是第三个分类。单调推理在添加新前提时不会否定原有结论,如经典逻辑;非单调推理可能因新信息而改变结论,如默认推理。
1.单调推理(Monotonic Reasoning)
(1)定义:新信息不会否定原有结论。所谓单调推理是指在推理过程中随着推理的向前推进及新知识的加人,推出的结论呈单调增加的趋势,并且越来越接近最终目标,在推理过程中不会出现反复的情况,即不会由于新知识的加人否定了前面推出的结论,从而使推理又退回到前面的某一步。
(2)示例:
- 前提:所有鸟都会飞,企鹅是鸟。
- 结论:企鹅会飞(即使发现企鹅不会飞,原结论仍保留)。
(3)形式化:
若Γ ⊢ α,则Γ ∪ {β} ⊢ α
(4)应用场景:数学定理证明、传统数据库查询。
2.非单调推理(Non-Monotonic Reasoning)
(1)定义:新信息可能推翻原有结论。所谓非单调推理是指在推理过程中由于新知识的加人,不仅没有加强已推出的结论,反而要否定它,使得推理退回到前面的某一步,重新开始。非单调推理多是在知识不完全的情况下发生的。由于知识不完全,为使推理进行下去,就要先做某些假设,并在此假设的基础上进行推理,当以后由于新知识的加人发现原先的假设不正确时,就需要推翻该假设以及以此假设为基础推出的一切结论,再用新知识重新进行推理。显然,前面所说的默认推理是非单调推理。在人们的日常生活及社会实践中,很多情况下进行的推理也都是非单调推理,这是人们常用的一种思维方式。
(2)示例:
- 前提:鸟会飞,企鹅是鸟。
- 新信息:企鹅不会飞。
- 修正结论:企鹅不会飞。
(3)技术实现:
默认逻辑:
默认规则:Bird(x) : Flies(x) / Flies(x)
事实:Bird(Penguin), ¬Flies(Penguin)
结论:¬Flies(Penguin)(覆盖默认规则)
封闭世界假设:未明确为真的命题默认为假。
(4)应用场景:常识推理、法律判决。
(四)启发式分类:效率与准确性的平衡
第四个分类是启发式与非启发式推理。启发式利用经验或启发式信息,如 A * 算法;非启发式则按固定规则,如广度优先搜索。需要比较两者的优缺点。
1.启发式推理(Heuristic Reasoning)
(1)定义:利用经验或启发式信息加速推理。所谓启发性知识是指与问题有关且能加快推理进程、求得问题最优解的知识。
(2)示例:
A * 算法:在路径规划中,结合实际距离(g (n))和启发式估计(h (n))选择最优路径。
f(n) = g(n) + h(n)
启发式推理过程(A * 算法):
- 定义地图节点:起点 A,终点 B,中间节点 C、D。
- 计算 g (n)(实际距离)和 h (n)(直线距离)。
- 选择路径 A→C→B,总代价最小。
启发式推理具体流程:
- 初始化开放列表(待探索节点)和关闭列表(已探索节点)。
- 选择 f (n) 最小的节点扩展。
- 更新邻居节点的 f (n),重复直到找到目标。
(3)应用场景:游戏 AI、机器人导航。
2.非启发式推理(Non-Heuristic Reasoning)
(1)定义:按固定规则搜索,不依赖启发式信息。
(2)示例:
广度优先搜索:逐层遍历所有可能路径。
深度优先搜索:尽可能深入探索路径。
局限性:易陷入 “组合爆炸”,效率低下。
(五)基于知识的推理、统计推理、直觉推理
若从方法论的角度划分,推理可分为基于知识的推理、统计推理及直觉推理。
故名思义,所谓基于知识的推理就是根据已掌握的事实,通过运用知识进行的推理。例如医生诊断疾病时,他根据病人的症状及检验结果,运用自已的医学知识进行推理,最后给出诊断结论及治疗方案,这就是基于知识的推理。今后我们所讨论的推理都属于这一类。
统计推理是根据对某事物的数据统计进行的推理。例如农民根据对农作物的产量统计,得出是否增产的结论,从而可找出增产或者减产的原因,这就是运用了统计推理。
直觉推理又称为常识性推理,是根据常识进行的推理。例如,当你从某建筑物下面走过时,猛然发现有一物体从建筑物上掉落下来,这时你立即就会意识到“这有危险”,并立即躲开,这就是使用了直觉推理。目前,在计算机上实现直觉推理还是一件很困难的工作,有待进行深人的研究工作。
除了上述分类方法外,推理还有一些其它分类方法。如根据推理的繁简不同,分为简单推理与复合推理;根据结论是否具有必然性,分为必然性推理与或然性推理;在不确定性推理中,推理又分为似然推理与近似推理或模糊推理,前者是基于概率论的推理,后者是基于模糊逻辑的推理。
三、推理的综合应用:专家系统与不确定性管理
王永庆在书中强调,实际 AI 系统常结合多种推理方式。以医疗诊断系统为例:
(1)确定性推理:通过症状匹配确定疾病(如体温≥38℃→发热)。
(2)不确定性推理:结合贝叶斯网络计算疾病概率(如头痛 + 流涕→感冒概率 70%)。
(3)启发式推理:使用 A * 算法快速定位最可能的诊断路径。
(4)非单调推理:根据新检查结果修正诊断(如 CT 显示肿瘤→推翻肺炎假设)。
四、挑战与前沿发展
- 知识表示瓶颈:复杂领域(如法律、医学)的知识难以形式化。
- 不确定性处理:如何融合多源不确定信息(如传感器数据、专家意见)。
- 效率优化:大规模知识库的推理速度问题(如使用并行计算、剪枝策略)。
- 可解释性:深度学习的 “黑箱” 推理缺乏逻辑可解释性,需结合符号逻辑。
五、总结
推理是人工智能的 “大脑”,其核心在于通过逻辑规则将知识转化为行动。王永庆的分类体系为理解推理提供了清晰框架,而实际应用中需结合多种方法以应对复杂场景。未来,随着神经符号计算、量子逻辑等技术的发展,推理将向更高效、可解释的方向演进,推动 AI 从 “感知智能” 迈向 “认知智能”。