人工智能示例之基于规则的专家系统(动物识别)的python完整代码

        其实我在“人工智能原理”的专栏中是比较系统的讲解过专家系统的,包括:专家系统的基本概念、一般结构、知识获取、检测与组织管理、推理流程、神经网络在专家系统中的应用等,但是确实没有一个完整的示例。

1.专家系统的基本概念解析:专家系统的基本概念解析——基于《人工智能原理与方法》的深度拓展_专家系统的本质-CSDN博客 

2.专家系统的一般结构解析:专家系统的一般结构解析——基于《人工智能原理与方法》的深度拓展-CSDN博客 

3.专家系统的知识获取、检测与组织管理:专家系统的知识获取、检测与组织管理——基于《人工智能原理与方法》的深度解析_专家系统 知识获取-CSDN博客 

4.专家系统的推理流程深度解析:专家系统的推理流程深度解析_专家系统推理过程-CSDN博客 

5.神经网络在专家系统中的应用:神经网络在专家系统中的应用:从符号逻辑到连接主义的融合创新_符号系统 知识库 神经网络-CSDN博客 

        本文仅对专家系统进行简单举例,不涉及复杂流程,并对示例的代码进行深度讲解,以期大家对专家系统运行过程的深度理解。

        如想了解专家系统中的复杂流程,如知识表示形式的不同、知识的获取与建模、推理机制的设定、规则匹配算法、规则冲突的消解机制等,可以看上面的文章,会有详细说明。

一、代码即运行结果

(一)python代码示例

        以下代码实现了一个面向动物识别领域的采用正向推理机的基于规则的专家系统,用于模拟人工智能中的符号推理过程。代码分为知识库推理机示例输入解释模块四个部分。完整代码如下:

# 知识库:规则列表(前提-结论)

rules = [

    {

        "name": "哺乳动物-有毛发",

        "premise": ["有毛发"],

        "conclusion": "哺乳动物"

    },

    {

        "name": "鸟类-有羽毛",

        "premise": ["有羽毛"],

        "conclusion": "鸟类"

    },

    {

        "name": "食肉动物-哺乳动物+吃肉",

        "premise": ["哺乳动物", "吃肉"],

        "conclusion": "食肉动物"

    },

    {

        "name": "老虎-哺乳动物+食肉动物+黄褐色+黑色条纹",

        "premise": ["哺乳动物", "食肉动物", "黄褐色", "黑色条纹"],

        "conclusion": "老虎"

    }]

# 推理机:正向推理

def forward_chaining(facts, rules):

    known_facts = set(facts)

    inferred = set()

    while True:

        updated = False

        for rule in rules:

            if all(p in known_facts for p in rule["premise"]) and rule["conclusion"] not in known_facts:

                known_facts.add(rule["conclusion"])

                inferred.add(rule["name"])

                updated = True

        if not updated:

            break

    return known_facts, inferred

# 示例输入:用户提供的事实

user_facts = ["有毛发", "吃肉", "黄褐色", "黑色条纹"]

result_facts, result_rules = forward_chaining(user_facts, rules)

# 解释模块:展示推理路径

print("已知事实:", user_facts)

print("推理结论:", result_facts - set(user_facts))

print("触发规则:")

for rule_name in result_rules:

    for rule in rules:

        if rule["name"] == rule_name:

            print(f"- {rule['name']}: {', '.join(rule['premise'])} → {rule['conclusion']}")

            break

(二)代码简单说明

(1)知识库部分定义了一个规则列表,每个规则有名字、前提和结论。比如第一个规则是“哺乳动物 - 有毛发”,前提是“有毛发”,结论是“哺乳动物”。这部分就是存储了专家系统的规则。

(2)推理机的正向推理函数forward_chaining。正向推理的基本思路从已知事实出发,逐步应

人工智能中的产生式系统(Production Rule System)是一种基于规则专家系统,它模仿人类专家解决问题的方式,通过一系列规则来推断和决策。动物识别系统通常会利用计算机视觉和机器学习技术,其中Python是一个常用的编程语言,因为有大量的库支持图像处理、特征提取和分类。 以下是一个简单的动物识别系统的Python代码框架示例,使用了OpenCV库进行图像预处理,以及像scikit-learn或TensorFlow这样的机器学习库进行分类: ```python import cv2 import numpy as np from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler # 1. 加载训练数据集(包含动物图片和对应的标签) # 定义两个列表,一个存储图片路径,一个存储对应的动物类别 images, labels = load_train_data() # 2. 图像预处理 def preprocess_image(image_path): img = cv2.imread(image_path) # ... 进行缩放、灰度化等预处理操作 return img # 3. 创建特征向量 features = [preprocess_image(img) for img in images] features = np.array(features) # 使用SVM(支持向量机)进行特征缩放和模型训练 scaler = StandardScaler() features_scaled = scaler.fit_transform(features) model = SVC(kernel='linear') # 可根据需要选择合适的分类器 model.fit(features_scaled, labels) # 4. 识别动物 def identify_animal(image_path): image = preprocess_image(image_path) feature_vector = scaler.transform([image]) prediction = model.predict(feature_vector) return prediction #
评论 34
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值