数学建模笔记(三)非线性规划和多目标优化

本文详细介绍了非线性规划的概念、数学模型和求解方法,包括凸规划的基本概念,通过实例展示了如何使用Lagrange乘数法和罚函数法解决有约束的非线性规划问题。此外,还探讨了多目标规划问题,如线性加权法、理想点法和优先级法等,并提供了实际应用的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学建模笔记(三)非线性规划和多目标优化

非线性规划概念和理论

非线性规划问题的数学模型

在这里插入图片描述

有约束非线性规划的求解

常见的处理思路是:可能的话将非线性问题转化为线性问题,将约束问题转化为无约束问题。
1.对有等式约束的非线性规划问题使用Lagrange乘数法求解
2.罚函数法:
利用目标函数和约束函数构造带参数的增广目标函数,从而转换成一系列无约束非线性规划问题来进行求解。

凸规划

基本概念:
1.凸集与凸函数的定义
凸集:
在这里插入图片描述凸函数:
在这里插入图片描述在这里插入图片描述例题1.
在这里插入图片描述求解:
先对目标函数和约束函数中的非线性函数求二阶行列式,若均大于0,则是凸优化问题。
求解代码:

import numpy as np
import cvxpy as cp
x=cp.Variable(2,pos=True)
obj=cp.Minimize(sum(x**2)-4*x[0]+4)
con=[-x[0]+x[1]-2<=0,
x[0]**2-x[1]+1<=0]
prob = cp.Problem(obj, con)
prob.solve(solver='CVXOPT')
print("最优值为:",round(prob.value,4))
print("最优解为:\n", np.round(x.value,4))
#-------------结果--------------
最优值为: 3.7989
最优解为:
 [0.5536 1.3064]

一个简单的非线性规划模型

数学建模五步骤:
提出问题、选择建模方法、推导模型的数学表达式、求解模型、回答问题
例题2.
在这里插入图片描述19英寸数量 x 1 x_1 x1
21英寸数量 x 2 x_2 x2
19英寸利润 x 1 ∗ ( 339 − 195 − 0.01 x 1 − 0.003 x 2 ) x_1* (339-195-0.01x_1-0.003x_2) x1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值