刚刚在看ICML 2010的一篇关于搜索广告CTR预估的文章:
上周跟中科院的同学吃饭时,他们说在KDDCUP竞赛时,这篇文章的算法效果非常好。当时就想好好读一下,拖了几天,今天终于看了个开头。
Bing adCenter内部举办了一个CTR预估的比赛,这篇论文的方法adPredictor表现最优异,加上方法可以并行化,而且是online learning,优点多多,后来逐渐替换了Bing原来的算法。可见这个方法的威力。
文章在介绍算法细节之前,先普及了一些搜索广告、关键词竞价、常用特征、效果评估方法等信息。其中有一点很有意思:
CTR预估方法会影响到各个广告位上的内容,进而影响到算法未来的训练数据,因此不得不面对一个“勘探”和“开采”的问题。换句话说,如果系统不能给新广告足够的展示机会,算法很容易陷入局部最优解,广告的候选池会越来越小。
CTR预估如此,推荐系统也面临同样的问题。所以豆瓣电台也添加了一个策略,在已挖掘的用户喜好之外,按一定的比例加一些用户没听过的歌曲,扩展用户的兴趣范围,避免“过度开采”。
这里还有关于计算广告的一点资料:

文章介绍了微软Bing搜索引擎中,adPredictor算法在CTR预估比赛中的优秀表现及其实现的在线学习和并行化优势。在搜索广告中,CTR预估算法需解决勘探与开采的平衡问题,防止陷入局部最优,影响广告多样性和数据质量。此外,推荐系统如豆瓣电台也有类似策略,通过添加新内容来扩展用户兴趣范围。
最低0.47元/天 解锁文章
874

被折叠的 条评论
为什么被折叠?



