(180904)Descending into ML:线性回归 和 训练与损失---- Google 机器学习速成课程笔记

本文是Google机器学习速成课程的笔记,重点探讨线性回归模型和训练过程中的损失函数。线性回归通过特征权重和偏差预测目标值,目标是找到使预测标签接近实际标签的权重和偏差。训练模型即经验风险最小化,损失是衡量单个样本预测准确性的数值。平方损失(L2损失)作为常用的损失函数,是观察值与预测值差的平方,而均方误差是整个数据集样本损失的平均值。
摘要由CSDN通过智能技术生成

线性回归模型

视频和文章中分别描述了两个例子:通过房屋面积来预测房价,通过虫鸣声来预测温度

通过虫鸣声来预测温度,如图

这里写图片描述

线性关系很简单,这里写图片描述

不难理解,这里的 y’ 使我们预测的值,b 是偏差,W1 是特征1的权重,X1 是特征1

对于多个特征 Xi 而言,这里写图片描述
我们的目的就是得到理想的权重和偏差,使得预测标签尽可能趋近实际观察标签
,这就是接下来要说到的训练,损失

训练和损失

训练 模型就是通过大量的有标签样本来学习得出所有权重和偏差的理想值,并检查多个样本寻求构建损失最小的模型(这一过程称为经验风险最小化

损失 是对于 单个样本 而言模型预测的准确程度,是一个数值。

这里写图片描述

损失函数
  • 平方损失(L2损失)

对单个样本而言,平方损失为

=(observation - prediction(x))^2
=(y - y')^2

观察值减去预测值的平方

  • 均方误差

对于数据集D(含有N个有标签样本(x,y)),N个样本的平方损失之和除以N

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值