最近刚做完毕设,发现身边的人基本都在用PyTorch或者tensorflow作为深度学习的框架,接触到pl的人少之又少。在深度学习项目中,代码的复用性和训练的调试一直是让人头疼的问题。每次进行新的实验或调优模型时,我们常常需要花费大量时间来调整代码,解决各种意想不到的bug,导致进展缓慢。有没有一种方法可以简化这一过程,让我们更专注于模型的设计和实验结果呢?
答案是肯定的——这就是 PyTorch Lightning。PyTorch Lightning 是一个轻量级的框架,它基于 PyTorch,为我们提供了一种简洁高效的方式来组织代码、管理训练过程,并提升代码的可读性和复用性。通过使用 PyTorch Lightning,我们可以更专注于核心研究问题,而不必为繁琐的代码细节所困扰。
然而在GitHub以及各种计算机领域的社区,极少提及到这个框架的相关概念,关于这一点在新手的学习中也是较为困难,唯一的途径就是查看官方文档,链接我贴在下面。写这篇教程就是想帮助对这个框架感兴趣的朋友来入门。PyTorch Lightning 官方文档
在这篇教程中,我们将深入探讨 PyTorch Lightning 的基本概念、使用方法,以及如何在实际项目中应用它来提升工作效率。无论你是深度学习的新手,还是经验丰富的研究者,相信这篇教程都会给你带来启发和帮助。
对于未使用过该框架的用户,需要下载,打开终端在自己的虚拟环境中输入以下命令进行安装:
pip install pytorch-lightning
在 Python 解释器中输入以下代码,确保安装成功:
import pytorch_lightning as pl
print(pl.__version__)
对于传统的深度学习而言,我们就拿最简单的回归或者分类任务举例,完成一个深度学习的项目最少需要以下步骤:
1、准备数据集,并对数据进行预处理,数据清洗等
2、创建Dataset实例和DataLoader(数据加载器),确保模型在训练的时候能够分批次将数据传入
3、训练过程,包括优化器的定义,正向传播反向传播,计算损失梯度更新等……
4、测试
这些流程涉及到很多细微的操作,比如需要使用到各种回调(早停),保存模型参数,如何使用gpu并保证数据能够加载到gpu上面等等,使用传统的PyTorch都需要自己定义而且有很多繁琐的工作。
PyTorch Lightning 自动处理了许多繁琐的操作。例如,使用 PyTorch Lightning,可以轻松实现早停回调和模型参数保存,而无需编写复杂的代码。只需简单地配置回调函数,Lightning 就会自动监控验证损失并在合适的时候停止训练,并且会在训练过程中自动保存和加载最佳模型参数。此外,Lightning 提供了简洁的接口来使用 GPU,只需简单地配置设备参数,Lightning 就会自动处理数据和模型的加载过程。
那么我们就从上述步骤开始,编写lightning模块的代码。
PyTorch Lightning 教程:MNIST 分类任务
本文将带你一步步使用 PyTorch Lightning 完成一个 MNIST 分类任务。我们将从导入必要的模块开始,并详细解释每个步骤的具体操作。
导入模块
首先,我们需要导入一些必要的模块,包括 PyTorch、PyTorch Lightning 以及其他辅助库。