计算机视觉——参数矩阵与八点法的运用

本文详细介绍了计算机视觉中的基础矩阵概念,包括其原理、性质和计算方法,重点阐述了八点法的算法步骤和优缺点。通过实际的代码演示和不同拍摄场景下的结果分析,揭示了在前后拍摄、平行拍摄、左右拍摄中基础矩阵的表现。在遇到的问题及解决方法部分,指出了匹配点不足和图像选择不合适可能导致的错误,并提供了相应的解决方案。
摘要由CSDN通过智能技术生成

1基础矩阵

1.1原理

在这里插入图片描述
对于一幅图像上的点x(图上p1),在另一幅图像上存在对极线l’,并且在第二幅图像上,与x匹配的点x’(点p2)必然在l’上。为了表示x与l’关系,我们令基础矩阵F定义为: l′=Fx。

假设第一幅图到第二幅图之间存在单应性变换H,则 x′=Hx。

又因为l’是表示过对极点e2和图像点x’的直线,可以表示为: l′=e2×x′=[e2]xx′=[e2]xHx。

所以可得 F=[e2]xH。

1.2.基础矩阵性质

(1) 基础矩阵是秩为2、自由度为7的齐次矩阵。
(2)若x与x’是两幅图上的对应点,那么x′TFx=0。
(3)l’是对应于x的对极线,l′=Fx。
(4)若e是第二个摄像机光心在第一幅图像上的极点,那么Fe=0 。

1.3计算F:八点法

八点法是通过对应点来计算基础矩阵的算法。

八点算法的原理:
由于基础矩阵F 定义为:
在这里插入图片描述
任给两幅图像中的匹配点 x xx 与 x′ x’x
x = ( u , v , 1 ) T , x ’ = ( u ’ , v ’ , 1 ) T x=(u,v,1)T ,x’=(u’,v’,1)^T x=(u,v,1)Tx=(u,v,1)T
基础矩阵F是一个3×3的秩为2的矩阵,一般记基础矩阵F为:
在这里插入图片描述
有相应方程:
在这里插入图片描述

1.4八点算法的基本步骤

(1)求线性解 由系数矩阵A AA最小奇异值对应的奇异矢量f 求的F 。
(2)奇异性约束 是最小化Frobenius范数∥F−F’∥的F′ 代替F

1.5八点算法优缺点

八点算法的优点:
线性求解,容易实现,运行速度快 。
八点算法的缺点:
对噪声敏感。

2.代码

2.1八点法

# coding: utf-8
from PIL import Image
from numpy import *
from pylab import *
import numpy as np
from PCV.geometry import homography, camera, sfm
from PCV.localdescriptors import
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值