计算机视觉——基于bag of features的图像检索

本文介绍了计算机视觉中的图像检索技术,重点讲解了Bag of Features(词袋)算法和K-means聚类算法。首先,详细阐述了Bag of Features的流程,包括SIFT特征提取、K-means构造单词表、量化和直方图匹配等步骤。接着,概述了K-means算法的基本原理和步骤。通过代码实现,将SIFT特征匹配和数据模型存入数据库,并展示了实验结果,分析了匹配成功与不成功的因素。实验中遇到的问题,如模块属性错误和sqlite库缺失,也给出了相应的解决方法。
摘要由CSDN通过智能技术生成

1. 原理

1.1 Bag of features算法

Bag of features,简称Bof,中文翻译为“词袋”,是一种用于图像或视频检索的技术。而检索就要进行比对。两幅不同的图像如何比对,比对什么,这就需要提炼出每幅图像中精练的东西出来进行比较。

1、Bag of features算法基础流程
1、收集图片,对图像进行sift特征提取。
在这里插入图片描述
2、从每类图像中提取视觉词汇,将所有的视觉词汇集合在一起。
在这里插入图片描述
3、利用K-Means算法构造单词表。
K-Means算法是一种基于样本间相似性度量的间接聚类方法,此算法以K为参数,把N个对象分为K个簇,以使簇内具有较高的相似度,而簇间相似度较低。SIFT提取的视觉词汇向量之间根据距离的远近,可以利用K-Means算法将词义相近的词汇合并,作为单词表中的基础词汇,假定我们将K设为3,那么单词表的构造过程如下:
在这里插入图片描述
4、针对输入的特征集,根据视觉词典进行量化,把输入图像转化成视觉单词的频率直方图。
在这里插入图片描述
5、构造特征到图像的倒排表,通过倒排表快速索引相关图像。
6、根据索引结果进行直方图匹配。

1.2 K-means算法简介

1.2.1 原理
k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。

k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-means算法又称为k-均值算法。k-means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。

1.2.2 步骤
(1)从数据中选择k个对象作为初始聚类中心;
(2)计算每个聚类对象到聚类中心的距离来划分;
(3)再次计算每个聚类中心;
(4)计算标准测度函数,之道达到最大迭代次数,则停止,否则,继续操作。

2. 代码

2.1sift特征匹配

# -*- coding: utf-8 -*-
import pickle
from PCV.imagesearch import vocabulary
from PCV.tools.imtools import get_imlist
from PCV.localdescriptors import sift

#获取图像列表
imlist = get_imlist('C:\Python\Pictrue\cgr/')
nbr_images = len(imlist)
#获取特征列表
featlist = [imlist[i][:-3]+'sift' for i in range(nbr_images)]

#提取文件夹下图像的sift特征
for i in range(nbr_images):
    sift.process_image(imlist[i], featlist[i])

#生成词汇
voc = vocabulary.Vocabulary('ukbenchtest')
voc.train(featlist, 1000, 10)
#保存词汇
# saving vocabulary
with open('C:\Python\Pictrue\cgr/vocabulary.pkl'
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值