预训练模型&迁移学习

本文介绍了预训练模型和迁移学习的概念,强调了它们在节省时间和提高性能方面的优势。预训练模型是在大型数据集上训练的网络,可用于开箱即用的解决方案或作为特征提取器。迁移学习则涉及将预训练模型的特征迁移到新的目标任务上。文章提供了使用预训练模型的四个不同场景,并讨论了微调模型的方法,包括特征提取和部分层训练。案例中展示了如何利用预训练的VGG16模型进行微调,实现70%的准确率。
摘要由CSDN通过智能技术生成

预训练模型&迁移学习

预训练模型概念

预训练模型是一个已经训练好的保存下来的网络

该网络之前在一个大型的数据集上进行了训练(如图像相关的网络在ImageNet数据上进行了训练)

作用

可以用来开箱即用的解决方案

  • 直接用于推理

可以将预训练模型当做特征提取装置来使用,用于迁移学习

当预训练模型学习到的特征容易泛化的时候,迁移学习才能得到比较有效的使用

迁移学习

先在一个基础的数据集上进行任务的训练,生成一个基础网络

然后将学习到的特征重新进行调整或迁移到另一个目标网络上,用来训练目标任务的数据集。

  • 学习到的特征保存为一个网络文件就是一个预训练模型

迁移学习是一种优化方法,节省时间,或者能获得更好的性能的捷径

迁移学习在什么情况下有效

  • 当预训练模型(预训练获取到的特征)是容易泛化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值