预训练模型&迁移学习
预训练模型概念
预训练模型是一个已经训练好的保存下来的网络
该网络之前在一个大型的数据集上进行了训练(如图像相关的网络在ImageNet数据上进行了训练)
作用
可以用来开箱即用的解决方案
- 直接用于推理
可以将预训练模型当做特征提取装置来使用,用于迁移学习
当预训练模型学习到的特征容易泛化的时候,迁移学习才能得到比较有效的使用
迁移学习
先在一个基础的数据集上进行任务的训练,生成一个基础网络
然后将学习到的特征重新进行调整或迁移到另一个目标网络上,用来训练目标任务的数据集。
- 学习到的特征保存为一个网络文件就是一个预训练模型
迁移学习是一种优化方法,节省时间,或者能获得更好的性能的捷径
迁移学习在什么情况下有效
- 当预训练模型(预训练获取到的特征)是容易泛化