pytorch 训练过程acc_PyTorch之迁移学习实战

本文介绍了如何使用PyTorch进行迁移学习,以解决蚂蚁和蜜蜂分类的小数据集问题。通过预训练的ResNet18模型,采用两种方法:微调整个网络和仅训练全连接层,提升模型在有限数据下的性能。
摘要由CSDN通过智能技术生成

简介:

迁移学习是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。通常,源领域数据量充足,而目标领域数据量较小,迁移学习需要将在数据量充足的情况下学习到的知识,迁移到数据量小的新环境中。

本文我们根据PyTorch官网上的例子(作者:Sasank Chilamkurthy)学习如何使用传输学习来训练网络。 关于迁移学习的更多例子:http://cs231n.github.io/transfer-learning/

在实际工程上,很少有人从头开始训练整个卷积网络(随机初始化),因为拥有足够大小的数据集相对来说比较少见。 相反,我们可以在一个非常大的数据集(例如ImageNet,其中包含具有1000个类别的120万个图像)上预训练ConvNet模型,然后使用ConvNet模型作为初始化或固定特征提取器来处理继续处理当前的任务。这也是迁移学习常见的二个场景:

1.Finetuning the convnet: 用一个预训练好的网络模型来初始化网络当前模型参数,而不是随机初始化网络。(就像在imagenet 1000数据集上训练的网络一样。 其余过程一样)

2.ConvNet as fixed feature extractor: 冻结除最终完全连接层之外的所有网络的权重。 这个完全连接的层被替换为具有随机权重的新层,并且只有这个层被训练。

数据集

本文使用的数据集是imagenet的一个非常小的子集。数据集只包括蚂蚁和蜜蜂,要解决的问题是训练一个模型来分类蚂蚁和蜜蜂。 由于这是一个非常小的数据集。 所以我们使用迁移学习。data_transforms = {    'train': transforms.Compose([

transforms.RandomResizedCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),    'val': transforms.Compose([

transforms.Resize(256),

transforms.CenterCrop(224),

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),

}

data_dir = './data/hymenoptera_data'image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),

data_transforms[x])                  for x in ['train', 'val']}

dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,

shuffle=True, num_workers=4)              for x in ['train', 'val']}

dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}

class_names = image_datasets['train'].classesdef imshow(inp, title=None):

"""Imshow for Tensor."""

inp = inp.numpy().transpose((1, 2, 0))

mean = np.array([0.485, 0.456, 0.406])

std = np.array([0.229, 0.224, 0.225])

inp = std * inp + mean

inp = np.clip(inp, 0, 1)

plt.imshow(inp)

plt.show()if __name__ ==  '__main__':    # Get a batch of training data

inputs, classes = next(iter(dataloaders['train']))    # Make a grid from batch

out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])1234567891011121314151617181920212223242526272829303132333435363738394041

训练模型

我们通过迁移学习,将预训练好的模型迁移到当前的任务中来,分为二种方式:

1.Finetuning the convnet,使用resnet18训练好的模型来初始化当前模型的参数,后续训练过程和以前一样。model_ft = models.resnet18(pretrained=True)

num_ftrs = model_ft.fc.in_features

model_ft.fc = nn.Linear(num_ftrs, 2)

criterion = nn.CrossEntropyLoss()    # Observe that all parameters are being optimized

optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)    # Decay LR by a factor of 0.1 every 7 epochs

exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=2)12345678910111213

2.ConvNet as fixed feature extractor,冻结除最后一层(全连接层)之外的所有参数,然后小数据集训练时,只更新全连接层的参数。model_conv = torchvision.models.resnet18(pretrained=True)

for param in model_conv.parameters():

param.requires_grad = False# Parameters of newly constructed modules have requires_grad=True by defaultnum_ftrs = model_conv.fc.in_features

model_conv.fc = nn.Linear(num_ftrs, 2)

criterion = nn.CrossEntropyLoss()# Observe that only parameters of final layer are being optimized as# opoosed to before.optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)# Decay LR by a factor of 0.1 every 7 epochsexp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)123456789101112131415

完整代码:from __future__ import print_function, divisionimport torchimport torch.nn as nnimport torch.optim as optimfrom torch.optim import lr_schedulerfrom torch.autograd import Variableimport numpy as npimport torchvisionfrom torchvision import datasets, models, transformsimport matplotlib.pyplot as pltimport timeimport osimport copy

data_transforms = {    'train': transforms.Compose([

transforms.RandomResizedCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),    'val': transforms.Compose([

transforms.Resize(256),

transforms.CenterCrop(224),

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),

}

data_dir = './data/hymenoptera_data'image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),

data_transforms[x])                  for x in ['train', 'val']}

dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,

shuffle=True, num_workers=4)              for x in ['train', 'val']}

dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}

class_names = image_datasets['train'].classesdef train_model(model, criterion, optimizer, scheduler, num_epochs=25):

since = time.time()

best_model_wts = copy.deepcopy(model.state_dict())

best_acc = 0.0

for epoch in range(num_epochs):

print('Epoch {}/{}'.format(epoch, num_epochs - 1))

print('-' * 10)        # Each epoch has a training and validation phase

for phase in ['train', 'val']:            if phase == 'train':

scheduler.step()

model.train(True)  # Set model to training mode

else:

model.train(False)  # Set model to evaluate mode

running_loss = 0.0

running_corrects = 0

# Iterate over data.

for data in dataloaders[phase]:                # get the inputs

inputs, labels = data

inputs, labels = Variable(inputs), Variable(labels)                # zero the parameter gradients

optimizer.zero_grad()                # forward

outputs = model(inputs)

_, preds = torch.max(outputs.data, 1)

loss = criterion(outputs, labels)                # backward + optimize only if in training phase

if phase == 'train':

loss.backward()

optimizer.step()                # statistics

running_loss += loss.data[0] * inputs.size(0)

running_corrects += torch.sum(preds == labels.data)

epoch_loss = running_loss / dataset_sizes[phase]

epoch_acc = running_corrects / dataset_sizes[phase]

print('{} Loss: {:.4f} Acc: {:.4f}'.format(

phase, epoch_loss, epoch_acc))            # deep copy the model

if phase == 'val' and epoch_acc > best_acc:

best_acc = epoch_acc

best_model_wts = copy.deepcopy(model.state_dict())

print()

time_elapsed = time.time() - since

print('Training complete in {:.0f}m {:.0f}s'.format(

time_elapsed // 60, time_elapsed % 60))

print('Best val Acc: {:4f}'.format(best_acc))    # load best model weights

model.load_state_dict(best_model_wts)    return modeldef visualize_model(model, num_images=6):

images_so_far = 0

fig = plt.figure()    for i, data in enumerate(dataloaders['val']):

inputs, labels = data

inputs, labels = Variable(inputs), Variable(labels)

outputs = model(inputs)

_, preds = torch.max(outputs.data, 1)        for j in range(inputs.size()[0]):

images_so_far += 1

ax = plt.subplot(num_images//2, 2, images_so_far)

ax.axis('off')

ax.set_title('predicted: {}'.format(class_names[preds[j]]))            if images_so_far == num_images:                return# Finetuning the convnetif __name__ ==  '__main__':

model_ft = models.resnet18(pretrained=True)

num_ftrs = model_ft.fc.in_features

model_ft.fc = nn.Linear(num_ftrs, 2)

criterion = nn.CrossEntropyLoss()    # Observe that all parameters are being optimized

optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)    # Decay LR by a factor of 0.1 every 7 epochs

exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=1)

visualize_model(model_ft)

plt.ioff()

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值