举例说明基于线性回归的单层神经网络网络(以梯度下降算法来求解权重的过程)...

c4ba099deab2fdcd992589a0f752831f.jpeg

我们将通过一个简单的例子来说明基于线性回归的单层神经网络,以及如何使用梯度下降算法来求解权重。

假设我们有以下数据集,表示学生的学习时间(小时)与他们的考试分数:

学习时间(X):1, 2, 3, 4, 5

考试分数(Y):2, 4, 6, 8, 10

这是一个线性关系,我们可以使用线性回归来预测给定学习时间的考试分数。在这个例子中,单层神经网络只有一个输入节点(学习时间)和一个输出节点(考试分数)。我们的目标是找到一个权重 w 和偏置 b,这样我们的神经网络可以很好地拟合数据。线性回归的公式如下:

y = wx + b

梯度下降算法是一种优化算法,用于最小化损失函数(在这种情况下为均方误差MSE)。损失函数表示我们模型的预测值与实际值之间的差异。

1. 首先,我们需要初始化权重 w 和偏置 b 的值。我们可以将它们初始化为0或任意其他较小的值。例如,w = 0,b = 0。

2. 然后,我们需要计算损失函数关于权重和偏置的梯度。在这种情况下,我们使用均方误差(MSE)作为损失函数。对于权重 w 和偏置 b,梯度可以表示为:

∂MSE/∂w = (-2/n) * Σ(xi * (yi - (w * xi + b)))

∂MSE/∂b = (-2/n) * Σ(yi - (w * xi + b))

其中 n 为数据点数量,xi 和 yi 分别为输入(学习时间)和输出(考试分数)。

3. 现在我们需要更新权重和偏置。我们使用学习率(α)来控制每次更新的幅度。权重和偏置的更新公式如下:

w = w - α * (∂MSE/∂w)

b = b - α * (∂MSE/∂b)

4. 重复步骤2和3多次,直到损失函数收敛到最小值。

假设我们选择学习率α为0.01,迭代100次。在这个例子中,我们可以计算出权重和偏置的最优值,例如 w ≈ 2 和 b ≈ 0。这意味着我们的预测模型为 y = 2x + 0

总结:

通过使用梯度下降算法,我们可以找到基于线性回归的单层神经网络的权重和偏置。在我们的例子中,权重 w ≈ 2,偏置 b ≈ 0。这使我们能够使用神经网络预测给定学习时间的考试分数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于梯度下降算法的优化(backpropagation)神经网络(简称bp神经网络)能够有效地应用于非线性系统拟合。这种算法通过不断调整网络权重和偏置,以最小化输出与目标之间的误差。 首先,bp神经网络通过前向传播计算得到输出,并将输出与真实值进行比较,得到误差。然后,基于梯度下降算法的反向传播开始执行。在反向传播过程中,误差被传播回每一层,并根据误差调整每个神经元的权重和偏置。 梯度下降算法通过计算每个权重和偏置对误差的偏导数来更新它们的值。具体而言,算法计算损失函数相对于每个权重和偏置的偏导数,然后沿着负梯度方向迭代调整权重和偏置,以最小化损失。这个过程不断重复直到达到预设的停止条件,如达到最大迭代次数或误差满足要求。 通过梯度下降算法优化的bp神经网络具有以下优点: 1. 非线性逼近能力:bp神经网络能够通过调整非线性激活函数的参数来拟合非线性系统,可以逼近各种复杂的函数关系。 2. 自适应学习:通过反向传播和梯度下降算法的迭代优化,bp神经网络能够根据数据不断调整自身的权重和偏置,以适应不同的数据特征和问题。 3. 并行计算:bp神经网络的每个神经元的计算是独立的,可以并行处理,提高了计算效率。 然而,bp神经网络也存在一些缺点,例如易陷入局部最优解、对初始权重和偏置敏感等。此外,对于大型复杂网络,训练时间较长,容易出现过拟合现象。 总的来说,基于梯度下降算法的优化bp神经网络能够有效地拟合非线性系统,但在实际应用中需要注意选择合适的超参数和控制训练过程,以获得较好的拟合结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值