NYOJ460 项链(环形区间DP)

项链

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述

Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=44颗珠子的头标记与尾标记依次为(23) (35) (510) (102)。我们用记号⊕表示两颗珠子的聚合操作,(jk)表示第jk两颗珠子聚合后所释放的能量。则第41两颗珠子聚合后释放的能量为:

(41)=10*2*3=60

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((41)2)3=10*2*3+10*3*5+10*5*10=710

输入
有多组测试数据(<15),每组数据有两行。每组数据的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i<N时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。
输出
对应每组数据,输出只有一行,是一个正整数E(E≤2.1*10^9),为一个最优聚合顺序所释放的总能量
样例输入
4
2 3 5 10
样例输出
710

 由于链是环形,因此要把1~n-1再加到n的末尾

可得状态转移方程dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]*a[i]*a[k+1]*a[j+1])

由于题目中规定第i颗珠子的尾是i+1的头

所以i~j这个区间的最大值由i~k,和k+1~j这两个区间得出

对于i~k区间,头应该是a[i]尾是a[k+1]

对于k+1~j区间,头是a[k+1],尾是a[j+1]

可得状态转移方程

#include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a));
const int N=210;
int dp[N][N],a[N],n;
int main()
{
    while(~scanf("%d",&n))
    {
        mem(dp,0);
        for(int i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
                a[i+n]=a[i];
            }
        for(int d=1;d<2*n;d++)
        {
            for(int i=1;i<2*n-d;i++)
            {
                int j=i+d;
                for(int k=i;k<j;k++)
                {
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+a[i]*a[k+1]*a[j+1]);
                }
            }
        }
        int maxx=0;
        for(int i=1;i<=n;i++)
            maxx=max(maxx,dp[i][i+n-1]);
        printf("%d\n",maxx);

    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值