本博文源于北京理工大学的《概率论与数理统计》。讨论四种定义分别是:古典定义、几何定义、频率定义、公理化定义。
概率的四种定义及公理化定义产生
古典概型
上过《概率论与数理统计》的课程同学了解到,分赌资是产生概率的起源,那么这个问题就是一个典型的古典概型的问题。
理解古典概型可以尝试用抛硬币,抛正面和抛反面都是一样的可能性。
概率的古典定义
设随机实验E的样本空间S含有n个样本点,事件A包含k个样本点,定义:
古典概型的计算方法
- 当样本点的总数较小时,列出S和A中的样本点,然后数点的个数;
- 当样本点的总数较大时,需要以排列组合为工具计算S和A中的样本点的个数。
一般题目都不会那么傻去考简单的硬币问题,如果玩的话可能更绕,把学生绕的很迷糊,但是也不要慌,一步步去分析,可以从数学中发现规律的。
古典概率的基本性质
这三个性质是一般概率都具有的。
- 非负性:P(A)>=0
- 归一性:P(S)=1
- 可加性:
古典概率的例子
高中研究的其实是古典概型问题。所以高中水平解决这道题目应该是没有问题的。
分析:次品有M件,那么有正品N-M件,恰有k件没有强调顺序之分。因此,用组合数C。古典概型强调等可能事件,因此,抓住等可能的定义,分子除以分母。
解答:分母:从N件商品取出n件的组合
分子:从次品M中取出k件,从正品N-M件中取出n-k件
因此完整解答是这样子的。
几何概率
当如果仅仅停留在有限样本点是不够的,那就需要考虑无限的样本点了。
几何概型定义
向任一可度量区域G内投一点,如果所投的点落在G中任意可度量区域g内的可能性与g的度量成正比,而与g的位置和形状无关,则称这个随机试验为几何概型的随机实验,或简称为几何概型
几何概率的定义
在几何概型中,样本空间为S=G,G中的点是样本点
设A={投点落入区域g内},则有P(A)=[g的度量]/[G的度量]
几何概型的基本性质
因为整门课程都在研究概率,想当然而至,概型是个大范围,概率只是呈现概型的一种趋势。它的性致也包含同样的三种
- 非负性
- 归一性
- 可加性
几何概率的例题
就这个会面问题,如果用古典来做,简直是束手无策。如果用几何概率来做,那就直接画张图。那就分为甲、乙两人。
甲乙两人的可行区域都在0-60,都是在等20分钟后离去。
这里的60肯定是大正方形的面积,而40肯定时两个G拼在一起。
概率的频率定义
事件的频率
大白话就是一件事情的发生在整个样本空间之比。完整的文艺定义:
因此在课堂上讲课的时候,都会提到用频率近似概率。就会引出频率的稳定性
频率的稳定性
长期实践表明,在重复实验中,事件A发生的频率fn(A)总在一个常数值附近摆动,而且,随着重复试验次数n的增加,频率的摆动幅度越来越小。观测到的大偏差越来越稀少,呈现出一定的稳定性。
概率的频率定义
也就是对频率的稳定性做更详细的描述。
频率的概率基本性质
跟上面的性质相同:
- 非负性
- 归一性
- 可加性