概率的四种定义及公理化定义产生

本博文源于北京理工大学的《概率论与数理统计》。讨论四种定义分别是:古典定义、几何定义、频率定义、公理化定义。

古典概型

上过《概率论与数理统计》的课程同学了解到,分赌资是产生概率的起源,那么这个问题就是一个典型的古典概型的问题。
在这里插入图片描述
理解古典概型可以尝试用抛硬币,抛正面和抛反面都是一样的可能性。

概率的古典定义

设随机实验E的样本空间S含有n个样本点,事件A包含k个样本点,定义:
在这里插入图片描述

古典概型的计算方法

  • 当样本点的总数较小时,列出S和A中的样本点,然后数点的个数;
  • 当样本点的总数较大时,需要以排列组合为工具计算S和A中的样本点的个数。

一般题目都不会那么傻去考简单的硬币问题,如果玩的话可能更绕,把学生绕的很迷糊,但是也不要慌,一步步去分析,可以从数学中发现规律的。

古典概率的基本性质

这三个性质是一般概率都具有的。

  • 非负性:P(A)>=0
  • 归一性:P(S)=1
  • 可加性:
    在这里插入图片描述

古典概率的例子

在这里插入图片描述
高中研究的其实是古典概型问题。所以高中水平解决这道题目应该是没有问题的。
分析:次品有M件,那么有正品N-M件,恰有k件没有强调顺序之分。因此,用组合数C。古典概型强调等可能事件,因此,抓住等可能的定义,分子除以分母。
解答:分母:从N件商品取出n件的组合
分子:从次品M中取出k件,从正品N-M件中取出n-k件
因此完整解答是这样子的。
在这里插入图片描述

几何概率

当如果仅仅停留在有限样本点是不够的,那就需要考虑无限的样本点了。

几何概型定义

向任一可度量区域G内投一点,如果所投的点落在G中任意可度量区域g内的可能性与g的度量成正比,而与g的位置和形状无关,则称这个随机试验为几何概型的随机实验,或简称为几何概型

几何概率的定义

在几何概型中,样本空间为S=G,G中的点是样本点
设A={投点落入区域g内},则有P(A)=[g的度量]/[G的度量]

几何概型的基本性质

因为整门课程都在研究概率,想当然而至,概型是个大范围,概率只是呈现概型的一种趋势。它的性致也包含同样的三种

  • 非负性
  • 归一性
  • 可加性

几何概率的例题

在这里插入图片描述

就这个会面问题,如果用古典来做,简直是束手无策。如果用几何概率来做,那就直接画张图。那就分为甲、乙两人。
甲乙两人的可行区域都在0-60,都是在等20分钟后离去。
在这里插入图片描述

在这里插入图片描述
这里的60肯定是大正方形的面积,而40肯定时两个G拼在一起。

概率的频率定义

事件的频率

大白话就是一件事情的发生在整个样本空间之比。完整的文艺定义:
在这里插入图片描述
因此在课堂上讲课的时候,都会提到用频率近似概率。就会引出频率的稳定性

频率的稳定性

长期实践表明,在重复实验中,事件A发生的频率fn(A)总在一个常数值附近摆动,而且,随着重复试验次数n的增加,频率的摆动幅度越来越小。观测到的大偏差越来越稀少,呈现出一定的稳定性。

概率的频率定义

也就是对频率的稳定性做更详细的描述。
在这里插入图片描述

频率的概率基本性质

跟上面的性质相同:

  • 非负性
  • 归一性
  • 可加性

概率的公理化定义

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值