遗传算法参数设置以及算法结束条件

本文探讨了MATLAB遗传算法的参数设置,包括种群规模、迭代次数、交叉与变异概率,以及算法结束条件,如目标函数达标和群体稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博文源于matlab遗传算法,旨在讲述算法参数设置以及算法结束条件。

算法参数

种群规模M(即群体中所含个体的数量)

  • 一般规模含20-100点

规模太大:会增加计算量
规模太小:不能提供足够的采样点

遗传算法的终止进化代数G:

  • 一般取为100-500代

迭代太长:运行时间过长
迭代太短:无法出现最优解

交叉概率Pc

  • 一般经验取值为0.4-0.99

概率太大:会使种群中高适应度个体的结构很快被破坏掉
概率太小:搜索停滞不前

变异概率Pm

  • 一般取值为0.0001-0.1

太大:变成随机搜索
太小:不会产生新的基因使得早熟

遗传算法进化结束条件

  • 染色体变化不大,群体趋于稳定。
  • 目标函数达到预设的要求
  • 迭代次数满足最大代数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值