本博文源于《商务统计》,旨在讲述常用的标准正态分布的分位数取值,matlab和spss也比较常用这些分位数取值,如果感兴趣的同学收藏即可。

例子:公共汽车车门的高度是按男子与车门顶头碰头机会在0.01以下来设计,设男子身高X~N(170,6^2),问车门高度应如何确定
破解题目

图中X服从正态分布,h不超过0.01,根据u0.01=2.33,所以计算公式就变成标准化的一个步骤

答案为183.98,即高度为184厘米
如果用matlab计算这种题目的时候,只需要一个逆分布命令即可,命令如下:
>> norminv(0.99,170,6)
ans =
183.9581