概率统计学习笔记(四)

6.1 相互独立

定义
A , B A,B A,B是两事件,如果满足等式 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)则称事件 A , B A,B A,B相互独立,简称 A , B A,B A,B独立。

  • P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0,则 A , B A,B A,B相互独立与 A , B A,B A,B互不相容不能同时成立。

定理一
A , B A,B A,B是两事件,且 P ( A ) > 0 P(A)>0 P(A)>0,若 A , B A,B A,B相互独立,则 P ( B ∣ A ) = P ( B ) P(B|A)=P(B) P(BA)=P(B)

定理二
若事件 A , B A,B A,B相互独立,则下列各对事件也相互独立 A 与 B ‾ , A ‾ 与 B , A ‾ 与 B ‾ A与\overline{B},\overline{A}与B,\overline{A}与\overline{B} AB,AB,AB

一般推断
一般,设 A 1 , . . . , A n A_1,...,A_n A1,...,An n ( n ≥ 2 ) n(n\ge2) n(n2)个事件,如果对于其中任意2个,任意3个,…,任意 n n n个事件的积事件的概率,都等于各个事件概率之积,则称事件 A 1 , . . . , A n A_1,...,A_n A1,...,An相互独立。

  • 若事件 A 1 , . . . , A n ( n ≥ 2 ) A_1,...,A_n(n\ge2) A1,...,An(n2)相互独立,则其中任意 k ( 2 ≤ k ≤ n ) k(2\leq k\leq n) k(2kn)个事件也相互独立。
  • n n n个事件 A 1 , . . . , A n ( n ≥ 2 ) A_1,...,A_n(n \ge2) A1,...,An(n2)相互独立,则将 A 1 , . . . , A n A_1,...,A_n A1,...,An中任意多个事件换成它们各自的对立事件,所得的 n n n个事件们相互独立。
    ToBeContinued
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值