6.1 相互独立
定义
设
A
,
B
A,B
A,B是两事件,如果满足等式
P
(
A
B
)
=
P
(
A
)
P
(
B
)
P(AB)=P(A)P(B)
P(AB)=P(A)P(B)则称事件
A
,
B
A,B
A,B相互独立,简称
A
,
B
A,B
A,B独立。
- 若 P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0,则 A , B A,B A,B相互独立与 A , B A,B A,B互不相容不能同时成立。
定理一
设
A
,
B
A,B
A,B是两事件,且
P
(
A
)
>
0
P(A)>0
P(A)>0,若
A
,
B
A,B
A,B相互独立,则
P
(
B
∣
A
)
=
P
(
B
)
P(B|A)=P(B)
P(B∣A)=P(B)
定理二
若事件
A
,
B
A,B
A,B相互独立,则下列各对事件也相互独立
A
与
B
‾
,
A
‾
与
B
,
A
‾
与
B
‾
A与\overline{B},\overline{A}与B,\overline{A}与\overline{B}
A与B,A与B,A与B
一般推断
一般,设
A
1
,
.
.
.
,
A
n
A_1,...,A_n
A1,...,An是
n
(
n
≥
2
)
n(n\ge2)
n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意
n
n
n个事件的积事件的概率,都等于各个事件概率之积,则称事件
A
1
,
.
.
.
,
A
n
A_1,...,A_n
A1,...,An相互独立。
- 若事件 A 1 , . . . , A n ( n ≥ 2 ) A_1,...,A_n(n\ge2) A1,...,An(n≥2)相互独立,则其中任意 k ( 2 ≤ k ≤ n ) k(2\leq k\leq n) k(2≤k≤n)个事件也相互独立。
- 若
n
n
n个事件
A
1
,
.
.
.
,
A
n
(
n
≥
2
)
A_1,...,A_n(n \ge2)
A1,...,An(n≥2)相互独立,则将
A
1
,
.
.
.
,
A
n
A_1,...,A_n
A1,...,An中任意多个事件换成它们各自的对立事件,所得的
n
n
n个事件们相互独立。
ToBeContinued