- hdu1546
- hdu2772
hdu 1546
题意:
两个成语若是前一个最后一个字符和后一个第一个字符相同,则说明它们有一条边。
注意这里的汉字字符用的4个16进制表示的。
求最短路径。
思路:
刚开始不知道在想什么,写的特别麻烦,一直tle,简直见鬼。
后来发现问题竟然出在判断字符相等那里写超时了。。也是佩服我自己。
就是一个最短路径,题意也不难。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <map>
#include <queue>
using namespace std;
const int maxn = 1005;
const int maxm = 1005*1005;
const int inf = 0x3f3f3f3f;
struct node
{
int to,w,next;
node(){}
node(int a,int b,int c = -1)
{ to = a; w = b; next = c; }
friend bool operator<(node a,node b)
{ return a.w > b.w; }
}edge[maxm];
struct da
{
char s[100];
int v;
}data[maxn];
int head[maxn];
int edgenum = 0,n;
void add(int from,int to,int w)
{
edge[edgenum] = node(to,w,head[from]);
head[from] = edgenum++;
}
int d[maxn];
int vis[maxn];
int kruskal()
{
priority_queue<node> pq;
for(int i = 0; i < maxn; i++) d[i] = inf,vis[i] = 0;
d[0] = 0;
pq.push(node(0,d[0]));
while(!pq.empty())
{
node temp = pq.top(); pq.pop();
int u = temp.to;
if(vis[u])continue;
vis[u] = 1;
for(int i = head[u]; ~i ;i = edge[i].next)
{
int v = edge[i].to,w = edge[i].w;
if(d[v] > d[u] + w)
{
d[v] = d[u] + w;
pq.push(node(v,d[v]));
}
}
}
d[n-1] == inf?printf("-1\n"):printf("%d\n",d[n-1]);
return 0;
}
void init()
{
edgenum = 0;
for(int i = 0; i < maxn; i++)head[i] = -1;
}
int main()
{
while(~scanf("%d",&n) && n != 0)
{
init();
for(int i = 0; i < n ; i++)
scanf("%d%s",&data[i].v,data[i].s);
for(int i = 0; i < n ;i++)
for(int j = 0; j < n ;j++)
{
if(i == j)continue;
int ilen = strlen(data[i].s);
int sti=ilen-4,stj=0;
int flag = 0;
for(int k = 0; k < 4; k++)
if(data[i].s[sti+k]!=data[j].s[stj+k]){flag = 1;break;}
if(flag) continue;
else add(i,j,data[i].v);
}
kruskal();
}
return 0;
}
hdu 2772
题意:
点到点之前有一个权值,到达这个点的安全程度是前面路径的权值乘积,求到达终点的最大的安全程度。
思路:
最短路径变形。终于有了一个1A的图论题,很感动。。。
容易写出奇怪的错误,感觉自己对dijksta还是不是很理解。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std;
const int maxn = 1005;
const double eps = 1e-6;
const double inf = 0x3f3f3f3f;
int n;
double data[maxn][maxn];
double d[maxn];
struct node
{
int to;double w;
node(int a,double b) {to = a ; w = b;}
friend bool operator<(node a,node b)
{ return a.w < b.w; }
};
int dijkstra(int f,int l)
{
for(int i = 0; i < maxn ;i ++) d[i] = 0;
d[f] = 1;
priority_queue<node> pq;
pq.push(node(f,d[f]));
while(!pq.empty())
{
node temp = pq.top(); pq.pop();
int u = temp.to;
for(int i = 1; i <= n ; i++)
{
if(abs(data[u][i]) < eps) continue;
if(d[u]*data[u][i] > d[i])
{
d[i] = d[u]*data[u][i];
pq.push(node(i,d[i]));
}
}
}
if(abs(d[l]) < eps) printf("What a pity!\n");
else printf("%.3f\n",d[l]);
return 0;
}
int main()
{
int q;
while(~scanf("%d",&n))
{
for(int i = 1 ;i <= n ;i++)
for(int j = 1 ;j <= n ;j++)
scanf("%lf",&data[i][j]);
scanf("%d",&q);
for(int i = 0; i < q; i++)
{
int f,l;
scanf("%d%d",&f,&l);
dijkstra(f,l);
}
}
return 0;
}