最短路径简单题 (主要是bellman+dijkstra)

  1. hdu1546
  2. hdu2772

hdu 1546
题意
两个成语若是前一个最后一个字符和后一个第一个字符相同,则说明它们有一条边。
注意这里的汉字字符用的4个16进制表示的。
求最短路径。
思路
刚开始不知道在想什么,写的特别麻烦,一直tle,简直见鬼。
后来发现问题竟然出在判断字符相等那里写超时了。。也是佩服我自己。
就是一个最短路径,题意也不难。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <map>
#include <queue>
using namespace std;
const int maxn = 1005;
const int maxm = 1005*1005;
const int inf = 0x3f3f3f3f;
struct node
{
    int to,w,next;
    node(){}
    node(int a,int b,int c = -1)
    {   to = a; w = b; next = c; }

    friend bool operator<(node a,node b)
    {   return a.w > b.w;   }
}edge[maxm];
struct da
{
    char s[100];
    int v;
}data[maxn];
int head[maxn];
int edgenum = 0,n;
void add(int from,int to,int w)
{
    edge[edgenum] = node(to,w,head[from]);
    head[from] = edgenum++;
}
int d[maxn];
int vis[maxn];
int kruskal()
{
    priority_queue<node> pq;
    for(int i = 0; i < maxn; i++) d[i] = inf,vis[i] = 0;
    d[0] = 0;
    pq.push(node(0,d[0]));
    while(!pq.empty())
    {
        node temp = pq.top(); pq.pop();
        int u = temp.to;
        if(vis[u])continue;
        vis[u] = 1;
        for(int i = head[u]; ~i ;i = edge[i].next)
        {
            int v = edge[i].to,w = edge[i].w;
            if(d[v] > d[u] + w)
            {
                d[v] = d[u] + w;
                pq.push(node(v,d[v]));
            }
        }
    }
    d[n-1] == inf?printf("-1\n"):printf("%d\n",d[n-1]);
    return 0;
}


void init()
{
    edgenum = 0;
    for(int i = 0; i < maxn; i++)head[i] = -1;
}

int main()
{
    while(~scanf("%d",&n) && n != 0)
    {
        init();
        for(int i = 0; i < n ; i++)
            scanf("%d%s",&data[i].v,data[i].s);

        for(int i = 0; i < n ;i++)
        for(int j = 0; j < n ;j++)
        {
            if(i == j)continue;
            int ilen = strlen(data[i].s);
            int sti=ilen-4,stj=0;
            int flag = 0;
            for(int k = 0; k < 4; k++)
                if(data[i].s[sti+k]!=data[j].s[stj+k]){flag = 1;break;}
            if(flag) continue;
            else add(i,j,data[i].v);
        }
        kruskal();
    }
    return 0;
}

hdu 2772
题意
点到点之前有一个权值,到达这个点的安全程度是前面路径的权值乘积,求到达终点的最大的安全程度。
思路:
最短路径变形。终于有了一个1A的图论题,很感动。。。
容易写出奇怪的错误,感觉自己对dijksta还是不是很理解。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std;
const int maxn = 1005;
const double eps = 1e-6;
const double inf = 0x3f3f3f3f;
int n;
double data[maxn][maxn];
double d[maxn];
struct node
{
    int to;double w;
    node(int a,double b)    {to = a ; w = b;}
    friend bool operator<(node a,node b)
    {   return a.w < b.w; }
};

int dijkstra(int f,int l)
{
    for(int i = 0; i < maxn ;i ++) d[i] = 0;
    d[f] = 1;
    priority_queue<node> pq;
    pq.push(node(f,d[f]));
    while(!pq.empty())
    {
        node temp = pq.top(); pq.pop();
        int u = temp.to;
        for(int i = 1; i <= n ; i++)
        {
            if(abs(data[u][i]) < eps) continue;
            if(d[u]*data[u][i] > d[i])
            {
                d[i] = d[u]*data[u][i];
                pq.push(node(i,d[i]));
            }
        }
    }
    if(abs(d[l]) < eps) printf("What a pity!\n");
    else    printf("%.3f\n",d[l]);
    return 0;
}

int main()
{
    int q;
    while(~scanf("%d",&n))
    {
        for(int i = 1 ;i <= n ;i++)
        for(int j = 1 ;j <= n ;j++)
            scanf("%lf",&data[i][j]);
        scanf("%d",&q);
        for(int i = 0; i < q; i++)
        {
            int f,l;
            scanf("%d%d",&f,&l);
            dijkstra(f,l);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值