Dijkstra算法学习

本文介绍了Dijkstra算法,一种解决有向图最短路径问题的经典算法。文章详细阐述了算法原理,即从一个初始节点开始,逐步扩大已知最短路径节点集合,直到覆盖所有节点。并提供了算法的实现过程,包括如何选择最短路径节点和更新路径距离。通过一个易于理解的图例辅助解释,帮助读者深入理解Dijkstra算法。
摘要由CSDN通过智能技术生成

Dijkstra算法

Dijkstra算法是求解有向图最短路径的经典算法,计算从一个指定的初始结点到其他各个结点最短路径。它的理论基础就是一条最短路径的子路径也一定是最短的。

实现如下:

  1. 将所有结点分为两个集合,一个命名为S集,一个命名为U集。S集中的点是我们已知其最短路径的点,U集中的点是我们还未知其最短路径的点。因此初始时刻,S集中只有一个我们选定的起始点,U集中是除了起始点意外的所有点;而最终时刻,S集中应该包含所有的点,U集为空集。
  2. 从最后加入S集的u点出发,选出到U集中最短的那个点nextVertex,将nextVertex点加入S集,并从U集中移除nextVertex点。
  3. 更新U集各点到起点的距离。如果从起点到u点再到U集中某点的距离比之前保存的距离小,就更新,否则不更新。

图例:用Dijkstra算法求解如下图的最短路径
这里写图片描述
这里写图片描述
感觉这是我看到的一个最好理解图。

附上实现代码:

#include<iostream>
#include<vector>
#include<stack>

using namespace std;

int map[][5] = {     //邻接矩阵
        {
  0,10,INT_MAX,INT_MAX,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值