我最近看一些深度学习网络在人脸超分任务上的应用。例如 CVPR 期刊在2018年有篇文章为:FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,其核心思想是用了一个子网络获得人脸的先验特征信息,再结合主网络做超分任务,性能效果获得了突破。
我由此联想到,人类文明发展的过程中,社会分工的精细化使得人各司其职,在公司里面每个人更是做着拧螺丝的工作。然后,在这种生产力的模式下,取得了1+1>2的效果,甚至是1+1>3等。
在 ISP 算法中,有人希望能够用一个深度网络代替原本 ISP 算法中的各个模块。当然,目前尚未有工业产品出来。
其实,从生产力的角度看,这是有违先进生产力模式的。从社会分工精细化的角度看,每个模块各司其事,达到局部最优解从而使得整体逼近全局最优解。你可能会辩解,例如对于单个网络来说有冗余。但是我认为这种冗余却是逼近最优解的原因之一,也因此,全局的最优解是永远无法获得的。
因此,从算法系统角度来看,一个算法达到初步的效果后,可以设置子模块,用于增强整个系统的效果。