从生产力角度看算法设计

文章探讨了深度学习在人脸超分任务中的应用,如FSRNet利用人脸先验特征提升性能。作者将此与社会分工进行类比,指出在算法系统中,模块化设计能逼近全局最优解。尽管单个网络可能存在冗余,但这种冗余可能有助于优化整体效果。作者建议在算法达到一定效果后,通过设立子模块来增强系统性能。
摘要由CSDN通过智能技术生成

    我最近看一些深度学习网络在人脸超分任务上的应用。例如 CVPR 期刊在2018年有篇文章为:FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors,其核心思想是用了一个子网络获得人脸的先验特征信息,再结合主网络做超分任务,性能效果获得了突破。

    我由此联想到,人类文明发展的过程中,社会分工的精细化使得人各司其职,在公司里面每个人更是做着拧螺丝的工作。然后,在这种生产力的模式下,取得了1+1>2的效果,甚至是1+1>3等。

    在 ISP 算法中,有人希望能够用一个深度网络代替原本 ISP 算法中的各个模块。当然,目前尚未有工业产品出来。

    其实,从生产力的角度看,这是有违先进生产力模式的。从社会分工精细化的角度看,每个模块各司其事,达到局部最优解从而使得整体逼近全局最优解。你可能会辩解,例如对于单个网络来说有冗余。但是我认为这种冗余却是逼近最优解的原因之一,也因此,全局的最优解是永远无法获得的。

    因此,从算法系统角度来看,一个算法达到初步的效果后,可以设置子模块,用于增强整个系统的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值