目标检测算法以及常用库概述

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

目标检测是在图像中发现并识别物体的过程,它是深度学习和图像处理领域的重要成果之一。在创建物体定位时,识别物体时,常见的一种方法是使用边界框。这种方法具有很高的通用,可以训练目标检测模型来识别和检测多个特定物体。

通常,目标检测模型被训练用于检测特定物体的存在。所构建的模型可以应用于图像、视频或实时操作中。在深度学习方法和现代图像处理技术出现之前,目标检测就已经受到了广泛关注。某些方法(如SIFT和HOG以及它们的特征和边缘提取技术)在目标检测方面取得了成功,而这个领域的其他竞争者相对较少。

随着卷积神经网络(CNNs)的引入和计算机视觉技术的发展,目标检测在当前时代变得愈发普及。深度学习方法带来的目标检测新浪潮为我们展示了无限的可能性。

目标检测利用每个类别的特殊和独特属性来识别所需的物体。在寻找正方形时,目标检测模型可以寻找垂直的角,从而形成正方形,每边长度相等。在寻找圆形物体时,目标检测模型会寻找中心点,从这些点可以创建特定的圆形实体。这些识别技术被用于人脸识别或物体跟踪。

在本文中,我们将探讨不同的目标检测算法和库

目标检测的应用场景

在日常生活中,目标检测已广泛应用。例如,智能手机通过面部识别解锁,或在商店和仓库的视频监控中识别可疑活动。

以下是目标检测的一些主要应用:

  • 车牌识别:结合目标检测和光学字符识别(OCR)技术,识别车辆上的字母数字字符。目标检测用于捕捉图像并检测特定图像中的车辆。模型检测到车牌后,OCR技术将二维数据转换为机器编码文本。
  • 人脸检测与识别:目标检测的主要应用之一是人脸检测和识别。借助现代算法,我们可以在图像或视频中检测到人脸。现在,由于一次性学习方法,甚至可以仅通过一张训练过的图像识别出人脸。
  • 物体跟踪:在观看棒球或板球比赛时,球可能会击中很远的地方。在这些情况下,跟踪球的运动以及它覆盖的距离是很有用的。为此,物体跟踪可以确保我们对球运动方向的连续信息。
  • 自动驾驶汽车:对于自动驾驶汽车,在行驶过程中研究车辆周围的不同元素至关重要。一个在多个类别上训练的目标检测模型对于自动驾驶汽车的良好性能至关重要。
  • 机器人技术:许多任务,如举重、拾放操作和其他实时工作,都是由机器人完成的。目标检测对于机器人检测物体和自动化任务至关重要。

自2010年代初深度学习普及以来,用于解决物体检测问题的算法质量不断提高。我们将探讨最受欢迎的算法,了解它们的工作原理、优点以及在某些场景中的缺陷。

1. 方向梯度直方图(HOG,Histogram of Oriented Gradients)

简介

方向梯度直方图(HOG)是物体检测方法中最古老的方法之一,首次亮相于1986年。尽管在接下来的十年里有一些发展,但直到2005年,这种方法才开始在许多与计算机视觉相关的任务中受到欢迎。HOG使用特征提取器来识别图像中的物体。

HOG中使用的特征描述符是图像部分的表示,我们只提取最必要的信息,而忽略其他内容。特征描述符的功能是将图像的整体大小转换为数组或特征向量的形式。在HOG中,我们使用梯度方向过程来定位图像中最关键的部分。

架构概述

在这里插入图片描述

在我们理解HOG的整体架构之前,让我们先了解一下它的工作原理。对于图像中的特定像素,通过考虑垂直和水平值来计算梯度直方图,从而获得特征向量。借助梯度幅度和梯度角度,我们可以通过探索水平和垂直周围的其他实体来获得当前像素的清晰值。

如上图所示,我们将考虑一个特定大小的图像段。第一步是通过将整个图像的计算划分为8×8个单元格的梯度表示来找到梯度。借助获得的64个梯度向量,我们可以将每个单元格分割为角度区间,并计算该区域的直方图。这个过程将64个向量的大小减小到9个值的较小大小。

一旦我们为每个单元获得9个点直方图值(区间),我们可以选择为单元块创建重叠。最后的步骤是形成特征块,对获得的特征向量进行归一化,并收集所有特征向量以获得整体HOG特征。

HOG的成就

  1. 创建了一个用于执行物体检测的特征描述符。
  2. 能够与支持向量机(SVMs)结合,实现高精度物体检测。
  3. 为每个位置的计算创建滑动窗口效果。

需要考虑的点

局限性 - 虽然方向梯度直方图(HOG)在物体检测的初期阶段相当具有革命性,但这种方法存在很多问题。对于图像中复杂像素的计算非常耗时,且在某些物体检测场景中效果不佳。

何时使用HOG?

HOG通常应作为物体检测的第一种方法,用于测试其他算法及其各自的性能。尽管如此,HOG在大多数物体检测和具有相当准确度的面部特征识别中具有重要用途。

2. 基于区域的卷积神经网络(R-CNN)

简介

基于区域的卷积神经网络(R-CNN)是相对于HOG和SIFT等之前的方法在物体检测过程中的一种改进。在R-CNN模型中,我们尝试通过使用选择性特征提取最重要的特征(通常约2000个特征)。选择最重要的特征提取过程可以借助选择性搜索算法来实现,该算法可以获得更重要的区域建议。

R-CNN的工作过程

在这里插入图片描述

选择性搜索算法的工作流程是为了选择最重要的区域建议,确保在特定图像上生成多个子分割,并选择适合任务的候选项。然后可以利用贪婪算法将有效的候选项合并,以便将较小的片段组合成适当的较大片段。

一旦选择性搜索算法成功完成,我们接下来的任务是提取特征并进行适当的预测。然后我们可以生成最终的候选建议,卷积神经网络可用于创建n维(2048或4096)特征向量作为输出。借助预训练的卷积神经网络,我们可以轻松实现特征提取任务。

R-CNN的最后一步是为图像做出适当的预测,并相应地标记边界框。为了获得每个任务的最佳结果,预测是通过为每个任务计算一个分类模型来进行的,而回归模型用于校正建议区域的边界框分类。

R-CNN的问题

  1. 尽管使用预训练的CNN模型可以有效地进行特征提取,但使用当前算法提取所有区域建议以及最终的最佳区域的整个过程非常缓慢。
  2. R-CNN模型的另一个主要缺点不仅是训练速度慢,而且预测时间长。解决方案需要使用大量计算资源,增加整个过程的可行性。因此,整体架构可以被认为相当昂贵。
  3. 有时候,由于在这个特定步骤中无法进行改进,最初的步骤可能会出现不良的候选选择。这可能导致训练模型中出现很多问题。

何时使用R-CNN?

R-CNN与HOG物体检测方法类似,应作为测

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值