机器学习-coursera-Andrew Ng
文章平均质量分 92
爱抠脚的coder
这个作者很懒,什么都没留下…
展开
-
机器学习-NG-week3-逻辑回归
这周我们主讲逻辑回归和正则化两个大问题:一:逻辑回归(1)分类问题在分类问题中,我们预测的变量y是离散值,我们将学习一种广泛运用的逻辑回归算法。我们经常讨论的二元分类问题,例如预测这个肿瘤是良性还是恶性,判断这个邮件是不是垃圾邮件等等,对于二元的分类问题,我们将可能属于的两个类别一个称为负向类(negative class)和正向类(positive class),则因变量,其中0表示原创 2018-01-09 19:12:34 · 684 阅读 · 0 评论 -
机器学习-Ng-week8-聚类和降维
一、聚类(1)无监督学习聚类是我们第一个介绍的无监督学习算法,没有给计算机提供标签,我们拿到的数据是没有标签的。之前我们的正负样本都是根据颜色的 不同区分,或者多个类的时候,我们的样本的样式是不一样的,下图是无监督学习的样本:很显然,这些数据都是不存在标签y的。在非监督学习中,我们需要乙烯类的无标签的训练数据,输入到一个算法中,然后我们告诉我们这个算法找找这个数据的内在结构,比如说上图吧,分成两个...原创 2018-03-03 17:08:08 · 633 阅读 · 0 评论 -
机器学习-coursera-exercise6-SVM-还待补充。。。
这周的练习题是关于支持向量机的!原创 2018-03-01 10:34:22 · 345 阅读 · 0 评论 -
机器学习-Ng-week7-支持向量机(SVM)
支持向量机(SVM)有一个监督学习算法,是解决非线性问题的一个很好的方法。(1)优化目标我们通过逻辑回归来一点一点的修改得到本质上的支持向量机。现在开始建造支持向量机,我们从代价函数开始,一点一点的修改,我们取z=1点,我先画出将要用的代价函数。先取z=1这一点,然后水平向右延伸,再画与逻辑回归十分相似的直线,改成这样的代价函数之后,会在后面的优化问题中更坚定,并且支持向量机带来了计算上的优势。同...原创 2018-02-28 19:50:08 · 319 阅读 · 0 评论 -
机器学习-coursera-exercise3-神经网络
一、多类别的分类器使用逻辑回归和神经网络来识别手写数字(0-9)。第一部分的学习,你只需要扩展你之前写的逻辑回归的函数并且将其运用到一对多的分类里面。(1)获取数据与之前不同,我们存放的mat格式,而不是txt格式,mat格式表示文件里面的数据已经是MATLAB的矩阵格式,而不是文本的ASCII码格式,这样的文件可以直接被load进去你的函数里面,load之后,矩阵的维数和值将原创 2018-01-17 20:17:38 · 490 阅读 · 0 评论 -
机器学习-coursera-exercise4-神经网络
一、神经网络-手写数字的识别(1)可视化数据跟前面一次练习题的可视化数据的函数一样,代码不贴了,同exercise3-可视化数据跟之前一样将每一个样例(20pixel*20pixel)的灰度图像展开成一个向量(400维),这样得到的X矩阵包含m(m=5000)行,每一行是一个样例。y是一个5000维的向量。(2)模型表示神经网络存在三层,一个输入层,一个隐藏层(25原创 2018-02-25 15:54:05 · 1156 阅读 · 0 评论 -
机器学习-coursera-exercise5-机器学习的建议
本周的练习题是关于正则化的线性回归和偏差方差问题。一、正则化的线性回归前半部分的练习,你会使用线性回归来通过水坝的水位预测大坝的流水量。后半部分,通过诊断法来调试学习算法并且检查方差和偏差的影响。(1)可视化数据集x:表示水位变化,y:表示大坝水流量数据集被分成三部分:训练集(X,y),用来决定正则化参数的交叉验证集(Xval,yval),用来评判性能的未见过的案例的测试集(X原创 2018-02-27 13:01:07 · 353 阅读 · 1 评论 -
机器学习-Ng-week6-机器学习的一些建议
一、机器学习的建议(1)决定下一步做什么假设我们的预测房价的线性回归模型在预测未知数据的时候出现了较大的误差,我们下一步可以怎么做呢?下面是几种方法:1.获取更多的训练实例--通常是有效地,但是代价太大2.减少特征的数量3.获得更多的特征4.增加多项式特征5.减少正则化的程度6.增加正则化的程度这些方法并非胡乱的使用,而是运用一些机器学习诊断法(通过一种测试法,原创 2018-02-26 08:51:37 · 503 阅读 · 0 评论 -
机器学习-Ng-week5-神经网络
为了后面方便讲解,我们引入一些标记:假设神经网络的训练样本有m个,每个包含一组输入x和一组输出y,L表示神经网络层数,表示每层的神经元的个数,表示输出层的神经元的个数,当的时候表示是一个二元分类,y=1或者0表示哪一类,当,表示是一个K类分类,表示分到第i类。一、代价函数在逻辑回归中我们只有一个输出变量,但是在神经网络中我们存在很多的输出变量,我们的是一个维度为k的向量。因此我们的代价函数相比较线...原创 2018-02-24 09:27:49 · 286 阅读 · 0 评论 -
机器学习-Ng-week4-简单的神经网络
一、神经网络的表述(neural networks representation )无论是之前学的逻辑回归还是线性回归,当特征特别多的时候,计算的负荷会非常大!对于计算机视觉的问题来说,比如识别车。我们会利用许多的汽车的图片和非汽车的图片,然后利用这些图片上的一个一个像素的值来作为特征。假设我们选择的是灰度图片,每一个像素只有一个值,我们选择图片上的两个位置上两个像素,然后训练一个逻辑回归算法利用...原创 2018-01-15 16:26:08 · 506 阅读 · 0 评论 -
机器学习-NG-week1&week2-线性回归
刚开启机器学习之路,今天来整理一下,我在week1&week2学到了什么!一:机器学习概述(1)什么是机器学习?在Stanford的课程上,吴大神说机器学习的定义有两种:a:机器学习是关于一个领域的学习,不是通过显示地编程手段给计算机一种能力去学习!Machine leaning :Field of study that gives computers the ability原创 2018-01-05 09:30:30 · 445 阅读 · 0 评论 -
机器学习-coursera exercise1-单变量线性回归
Exercise1-线性回归问题一、单变量的线性回归问题描述:你是一个老板,现在你手上存在一个ex1data1.txt的文件,这个文件里面存在两列,第一列是城市人口,第二列是这个城市的利润,你需要从这些数据中找到谁能成为下一个发展的城市!(1)可视化操作——绘制散点图(scatter plot)%step1:在主函数ex1.m里面获取ex1data1.txt里面的数据,并保存在原创 2018-01-07 10:34:30 · 522 阅读 · 0 评论 -
机器学习-couresera exercise1-多变量的线性回归
在上一个博客里面,我们写了单变量的线性回归问题,现在我们来完成多变量的线性回归问题!多变量的线性回归——预测房价在这个房价问题中,我们的数据存放在ex1data2.txt这个文件里面,第一列是房间大小,第二列是房间的卧室数目,第三列是房价,也就是说对比单变量的线性回归问题,我们这个问题存在两个特征,一个是size,一个是number of bedrooms!(1)特征归一化-featu原创 2018-01-07 21:50:04 · 724 阅读 · 0 评论 -
机器学习-coursera exercise2-逻辑回归
在第二次的练习中,我们将讨论逻辑回归的问题来预测一个学生能否被一个学校接收!一、逻辑回归题目描述:假如你是一个学校的校长,你需要判断每一个申请者能否被接收,依据的是两次的考试成绩。你有的是之前的申请者的数据来作为逻辑回归的训练集,对于每一个训练实例,你都有他的两门考试的成绩和他是否被接收了!你的任务就是建立一个分类模型,决定申请者被接收的概率?(1)可视化数据在ex2.m里面已经完原创 2018-01-11 21:29:02 · 680 阅读 · 0 评论 -
机器学习-coursera-exercise7-降维和聚类
本周你将使用k-均值聚类算法和主成分分析法。一、k-均值聚类k-均值将用于图像压缩。你将先在2维的数据集上开始来帮助我们理解k-均值是怎么运作的。你将通过减少颜色的数目来进行压缩。(1)k-均值k-均值的算法是一种自动的进行聚类相似的数据集的算法。提供给你一组训练集,你需要将他们分成相似的组。k-均值的本质是一种迭代算法,开始先随机初始化中心点,然后不断地通过给样本赋值他们的中心点原创 2018-03-04 15:48:10 · 576 阅读 · 0 评论