论文阅读-AKS_CoRR_2011

作者 年份 近似比
Hoogeveen 1991 5 3 \frac{5}{3} 35
An, Kleinberg, Shmoys 2012 1 + 5 2 \frac{1+\sqrt{5}}{2} 21+5
Sebo 2013 8 5 \frac{8}{5} 58
Rico Zenklusen 2019 1.5

Title: Improving Christofides’s Algorithm for the s-t path TSP

Alpha: 1 + 5 2 \frac{1+\sqrt{5}}{2} 21+5

Theorem1: Hoogeveen算法的解不超过 5 3 O P T L P \frac{5}{3}OPT_{LP} 35OPTLP

定义1: Path-TSP的HK松弛

m i n ∑ e ∈ E c e x e s . t . x ( δ ( v ) ) = { 1 , v = s , t 2 , v ≠ s , t x ( δ ( S ) ) ≥ { 1 , ∣ S ∩ { s , t } ∣ = 1 , 2 , ∣ S ∩ { s , t } ∣ ≠ 1 , 0 ≤ x e ≤ 1 , ∀ e ∈ E min \sum_{e\in E} c_ex_e\\ \begin{aligned} & s.t.\\ & x(\delta(v))=\begin{cases} 1, & v=s,t\\ 2, & v\neq s,t \end{cases}\\ & x(\delta(S)) \geq \begin{cases} 1, & |S \cap \{s,t\}|=1,\\ 2, & |S \cap \{s,t\}|\neq 1,\\ \end{cases}\\ & 0 \leq x_e \leq 1, \forall e \in E \end{aligned} mineEcexes.t.x(δ(v))={ 1,2,v=s,tv=s,tx(δ(S)){ 1,2,S{ s,t}=1,S{ s,t}=1,0xe1,eE

其中 δ ( S ) \delta(S) δ(S)是仅有一个端点落在S中的边的边集, 同时 X ( E ′ ) = ∑ e ∈ E ′ x e X(E')=\sum_{e \in E'} x_e X(E)=eExe, 所谓的松弛就是最后一个0-1向量变成了实数.

定义2: 生成树凸集

生成树凸集由下面的不等式定义:
x ( E ) = ∣ V ∣ − 1 , x ( E ( S ) ) ≤ ∣ S ∣ − 1 , ∀ ∣ S ∣ ⊆ V , ∣ S ∣ ≥ 2 , x e ≥ 0 , ∀ e ∈ E \begin{aligned} & x(E)=|V|-1,\\ & x(E(S)) \leq |S|-1, \quad \forall |S| \subseteq V, |S| \geq 2,\\ & x_e \geq 0, \quad \forall e \in E \end{aligned} x(E)=V1,x(E(S))S1,SV,S2,xe0,eE

其中E(S)是所有两个端点都在S中的边的边集.
在这里插入图片描述

Lemma1: LP-relaxation的任意可行解x都在生成树凸集中.

proof: LP-relaxation的约束满足生成树凸集的定义
X ( E ) ≡ ∑ e ∈ E x e = 1 2 ∑ v ∈ V x ( δ ( v ) ) = 1 2 ( ∣ v ∣ − 2 ) ⋅ 2 + 2 ) = ∣ v ∣ − 1 X(E) \equiv \sum_{e\in E} x_e = \frac{1}{2}\sum_{v\in V}x(\delta(v))\\ = \frac{1}{2}(|v|-2)\cdot 2 + 2)=|v|-1 X(E)eExe=21vVx(δ(v))=21(v2)2+2)=v1
同时,
X ( E ( S ) ) = 1 2 ( ∑ v ∈ S x ( δ ( v ) ) − x ( δ ( S ) ) ) X(E(S))=\frac{1}{2}(\sum_{v \in S}x(\delta(v))-x(\delta(S))) X(E(S))=21(vSx(δ(v))x(δ(S)))
如果 ∣ S ∩ { s , t } = 1 |S\cap \{s,t\}=1 S{ s,t}=1, 有 X ( E ( S ) ) ≤ 1 2 ( 1 + 2 ( ∣ S ∣ − 1 ) − 1 ) = ∣ S ∣ − 1 X(E(S))\leq \frac{1}{2}(1+2(|S|-1)-1)=|S|-1 X(E(S))21(1+2(S1)1)=S1,

如果 ∣ S ∩ { s , t } = ∅ |S\cap \{s,t\}=\empty S{ s,t}=, S-1,

如果 ∣ S ∩ { s , t } = 2 |S\cap \{s,t\}=2 S{ s,t}=2,S-2

定义3: 奇数集S, 如果 ∣ S ∩ T ∣ |S\cap T| ST含有奇数个, 则S是个奇数集

Lemma2: S是一个奇数集, 如果 ∣ S ∩ { s , t } ∣ = 1 |S\cap \{s,t\}|=1 S{ s,t}=1, 则 ∣ F ∩ δ ( S ) ∣ |F\cap \delta(S)| Fδ(S)为偶数, 如果 ∣ S ∩ { s , t } ∣ ≠ 1 |S\cap \{s,t\}|\neq1 S{ s,t}=1, 则 ∣ F ∩ δ ( S ) ∣ |F\cap \delta(S)| Fδ(S)为奇数.

例如,

在这里插入图片描述

Proof: s,t 如果在S中, 它们有偶数度, 其他点有奇数度.

定义 ∑ v ∈ S d e g F ( v ) = 2 ∣ E ( S ) ∩ F ∣ + ∣ δ ( S ) ∩ F ∣ \sum_{v\in S}deg_F(v)=2|E(S)\cap F|+|\delta(S)\cap F| vSdegF(v)=2E(S)F+δ(S)F

证明如下:

1.如果 ∣ S ∩ { s , t } = 1 |S\cap \{s,t\}=1 S{ s,t}=1, 假设 s ∈ S s\in S sS, s ∈ T s\in T sT当且仅当 d e g F ( s ) deg_F(s) degF(s)even.

S o d d → e v e n S_{odd}\rightarrow even Soddeven # 个奇数度的节点在S中( ∣ S ∩ T ∣ o d d |S\cap T| odd STodd)

∑ v ∈ S d e g F ( v ) − 2 ∣ E ( s ) ∩ F ∣ = ∣ δ ( s ) ∩ F ∣ \sum_{v\in S}deg_F(v)-2|E(s)\cap F|=|\delta(s)\cap F| vSdegF(v)2E(s)F=δ(s)F
第一个子式为偶数度, 第二个子式肯定是偶数, 则右边也是偶数.



2. 如果 ∣ S

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值