非专业人的技术之路,从入门到精通再到放弃!!!~~~~
关键词:模型部署,机器学习,深度学习,grpc,RESTfull ,flask,docker,TF Sering
图片引用[模型部署] 模型分布式服务部署方案:grpc,flask;docker(感谢各位大佬分享,尊重知识产权,引用标注不明确或者其他问题请及时联系我,感谢各位大佬)
1. gRPC
2. RESTfull
很多朋友看到下述这些内容会有些懵逼的感觉,最初我也是很懵逼(非计算机专业),但是再想想微服务或者服务这个概念似乎就没有那么难以理解,我们做出的算法模型无论是否优秀都需要进行验证(算法模型为业务提供某种服务),算法模型部署生产才会有真正的价值体现,个人才会有真正的成长。
Google tensorflow 是经典的机器学习与深度学习模块,tensorflow Serving提供两种模型部署方式,即TF Serving客户端和服务端的通信方式有两种gRPC和RESTfull APl模式,文本案例中使用 docker容器模式进行部署,如果你不了docker容器,建议你直接放弃使用docker直接部署体验就好,避免太复杂让很多人一头雾水,放弃docker(算法模型——>服务器Windows或者Linux——>服务端——>客户端)
具体内容参见https://www.jianshu.com/p/afe80b2ed7f0
作者最初看到模型部署方案是关于PMML文件模型部署形式《将机器学习模型部署为REST API》,不过尝试很久最终放弃,PMML文件模式的模型部署方案已经有很多文章进行讲述这里就不多说。总之是过去式了吧?
具体内容参见https://blog.csdn.net/demm868/article/details/103053072
机器学习and深度学习算法模型部署方案总结
接下来详细简介flask restfull and grpc 部署案例