[论文笔记]DECCO: Deep-Learning Enabled Coverage and Capacity Optimization for Massive MIMO Systems

这是一篇来自IEEE ACCESS的paper(影响因子19年3.745),18年4月发表,到本博客的时间点被引了18次,值得一提的或许是这文的一作是一个IEEE的Fellow YANG YANG。

摘要

覆盖范围系统容量的折衷及联合优化在大规模MIMO无线系统中是重要且有挑战性的。

  1. 本文提出的方法名为GAUSS(Group Alignment of User Signal Strength),用来支持大规模MIMO系统的用户调度,为优化覆盖范围和系统容量(CCO, Coverage and Capacity Optimization)提供有效参数。
  2. 此外,还提出了一种基于DRL的联合优化覆盖范围和系统容量的算法(DECCO),其使用神经网络动态推到CCO期间的GAUSS和SINR_min。
  3. 此外,还提出了一种小区间干扰协调(ICIC)以增强CCO的性能。

经仿真,DECCO可以在系统容量和覆盖范围之间进行平衡,并且可以显著提升频谱效率。

结论

we can set learning clusters to account for learning gains decreasing as opposed to the scale of networks. 未来将在大规模学习中实现覆盖率和容量的优化。

介绍

MU-MIMO(多用户MIMO)可获得比SU-MIMO(单用户MIMO)更好的性能,其可以在同一频谱资源上对cell内的多个UE提供服务,借此改善频谱效率。CCO相关的系统参水包括 参考信号功率、天线倾角、调度参数等。但是在MU-MIMO系统中配置这些参数以改善CCO是困难的。

具体来讲,用户调度机制负责给具有精确的时间和频率分辨率的BS分配合适的频谱资源,同时考虑信道质量和QoS要求。因此我们可以通过找到合适的调度参数来解决CCO而非调整天线倾角。

paper 时间和会议 方法 目的 不足
[6]A self-optimization method for coverage-capacity optimization in OFDMA networks with MIMO 2011; icst \alpha-fair (一个优化算法) 改善覆盖范围 仅在SU-MIMO下研究
[7]A novel dynamic Q-learning-based scheduler technique for LTE-advanced technologies using neural networks 2012; IEEE LCN 动态QL 联合优化系统容量和用户公平 仅在SU-MIMO下研究
[8]Joint user scheduling and power allocation for massive MIMO downlink with two-stage precoding 2016; ICCC JSDM空间划分及复用

联合优化用户调度和功率分配

仅优化系统速率,没考虑覆盖范围
[9]Joint spatial division and multiplexing: Realizing massive MIMO gains with limited channel state information 2012; CISS MAX user scheduling;
Lagrange power optimization
联合优化用户调度和功率分配  
[10]User grouping and scheduling for large scale MIMO systems with two-stage precoding 2014; ICC K-means 用户分组,给不同组分配资源 仅优化系统速率,没考虑覆盖范围

本文关键贡献

  1. 提出了一种新颖的调度参数GAUSS,以及统一的服务质量阈值SINRmin,以解决大规模MIMO系统中CCO的难题。
  2. 提出了一种CCO算法 DECCO,其可通过用户调度方案中的预训练神经网络以及新颖的ICIC方案,动态推导GAUSS和SINRmin的最优组合。
  3. 重要指标:小区平均频谱效率、小区边缘的频谱效率,系统容量和覆盖范围。

系统模型及问题陈述

大规模MIMO模型

如图1所示,我们考虑大规模MIMO的下行传输,绿色部分表示小区中心,虚线与实线之间表示小区边缘。对于该系统的CCO来说,用CSAE(小区平均频谱效率)和CESE(小区边缘频谱效率&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值