序
这是一篇来自IEEE ACCESS的paper(影响因子19年3.745),18年4月发表,到本博客的时间点被引了18次,值得一提的或许是这文的一作是一个IEEE的Fellow YANG YANG。
摘要
覆盖范围和系统容量的折衷及联合优化在大规模MIMO无线系统中是重要且有挑战性的。
- 本文提出的方法名为GAUSS(Group Alignment of User Signal Strength),用来支持大规模MIMO系统的用户调度,为优化覆盖范围和系统容量(CCO, Coverage and Capacity Optimization)提供有效参数。
- 此外,还提出了一种基于DRL的联合优化覆盖范围和系统容量的算法(DECCO),其使用神经网络动态推到CCO期间的GAUSS和SINR_min。
- 此外,还提出了一种小区间干扰协调(ICIC)以增强CCO的性能。
经仿真,DECCO可以在系统容量和覆盖范围之间进行平衡,并且可以显著提升频谱效率。
结论
we can set learning clusters to account for learning gains decreasing as opposed to the scale of networks. 未来将在大规模学习中实现覆盖率和容量的优化。
介绍
MU-MIMO(多用户MIMO)可获得比SU-MIMO(单用户MIMO)更好的性能,其可以在同一频谱资源上对cell内的多个UE提供服务,借此改善频谱效率。CCO相关的系统参水包括 参考信号功率、天线倾角、调度参数等。但是在MU-MIMO系统中配置这些参数以改善CCO是困难的。
具体来讲,用户调度机制负责给具有精确的时间和频率分辨率的BS分配合适的频谱资源,同时考虑信道质量和QoS要求。因此我们可以通过找到合适的调度参数来解决CCO而非调整天线倾角。
paper | 时间和会议 | 方法 | 目的 | 不足 |
[6]A self-optimization method for coverage-capacity optimization in OFDMA networks with MIMO | 2011; icst | 改善覆盖范围 | 仅在SU-MIMO下研究 | |
[7]A novel dynamic Q-learning-based scheduler technique for LTE-advanced technologies using neural networks | 2012; IEEE LCN | 动态QL | 联合优化系统容量和用户公平 | 仅在SU-MIMO下研究 |
[8]Joint user scheduling and power allocation for massive MIMO downlink with two-stage precoding | 2016; ICCC | JSDM空间划分及复用 | 联合优化用户调度和功率分配 |
仅优化系统速率,没考虑覆盖范围 |
[9]Joint spatial division and multiplexing: Realizing massive MIMO gains with limited channel state information | 2012; CISS | MAX user scheduling; Lagrange power optimization |
联合优化用户调度和功率分配 | |
[10]User grouping and scheduling for large scale MIMO systems with two-stage precoding | 2014; ICC | K-means | 用户分组,给不同组分配资源 | 仅优化系统速率,没考虑覆盖范围 |
本文关键贡献
- 提出了一种新颖的调度参数GAUSS,以及统一的服务质量阈值SINRmin,以解决大规模MIMO系统中CCO的难题。
- 提出了一种CCO算法 DECCO,其可通过用户调度方案中的预训练神经网络以及新颖的ICIC方案,动态推导GAUSS和SINRmin的最优组合。
- 重要指标:小区平均频谱效率、小区边缘的频谱效率,系统容量和覆盖范围。
系统模型及问题陈述
大规模MIMO模型
如图1所示,我们考虑大规模MIMO的下行传输,绿色部分表示小区中心,虚线与实线之间表示小区边缘。对于该系统的CCO来说,用CSAE(小区平均频谱效率)和CESE(小区边缘频谱效率&#x