资源管理
Love_marginal
这个作者很懒,什么都没留下…
展开
-
【文献阅读4】Position-Based User-Centric Radio Resource Management in 5G UDN for URLLC Vehicular Commu
Position-based user-centric radio resource management in 5G UDN for ultra-reliable and low-latency vehicular communications(点击可见原文)论文要解决的问题场景:UUDN+车联网,城镇中的高速公路 待传数据:车辆协同感知信息的V2I上行传输 研究对象:RRM(无线资源管理) 资源:虚拟小区的构建和时频资源块的分配 优化目标:高可靠低时延考虑到协同感知信息生成的周期.原创 2020-08-26 14:33:43 · 689 阅读 · 2 评论 -
【文献阅读03】Deep Reinforcement Learning Based Resource Allocation for V2V Communications
Deep Reinforcement Learning Based Resource Allocation for V2V Communications(点击可见原文)p.s.此文19年发表,到20年8月被引199次论文要解决的问题单播和广播场景下,考虑V2V通信的资源分配,使用分布式方案,在无 global information 的前提下为 V2V链路 or 车辆 找到最优的子带和功率等级,该算法能满足V2V链路的延迟约束并最小化对 V2I 的干扰。使用深度强化学习解决,已开源并有哥们写原创 2020-08-26 14:32:56 · 4279 阅读 · 6 评论 -
[文献提炼] 车联网中资源分配的问题建模 又三篇
前言摘录和分析看过的论文中SYSTEM MODEL /PROBLEM FORMULATION 的部分,关注论文的关键词为 UUDN V2X RL。本文为第二期,第一期链接:https://blog.csdn.net/m0_37495408/article/details/107546431Model-Free Ultra Reliable Low Latency Communication (URLLC): a Deep Reinforcement Learning Framework..原创 2020-07-27 17:00:14 · 2483 阅读 · 0 评论 -
[文献提炼] 车联网中资源分配的问题建模 三篇
前言摘录和分析看过的论文中SYSTEM MODEL /PROBLEM FORMULATION 的部分,关注论文的关键词为 UUDN V2X RL。Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning本文是19年使用RL解决V2X资源分配问题的经典开源论文链路的表示:考虑蜂窝车联网如上,在单一基站覆盖下存在 M 个 V2I 和 K 个 V2V,传输高数据率的娱乐数据和高...原创 2020-07-26 15:09:10 · 5818 阅读 · 1 评论 -
[论文笔记]DECCO: Deep-Learning Enabled Coverage and Capacity Optimization for Massive MIMO Systems
序这是一篇来自IEEE ACCESS的paper(影响因子19年3.745),18年4月发表,到本博客的时间点被引了18次,值得一提的或许是这文的一作是一个IEEE的Fellow YANG YANG。摘要覆盖范围和系统容量的折衷及联合优化在大规模MIMO无线系统中是重要且有挑战性的。本文提出的方法名为GAUSS(Group Alignment of User Signal Strength),用来支持大规模MIMO系统的用户调度,为优化覆盖范围和系统容量(CCO, Coverage and原创 2020-07-03 16:41:26 · 1097 阅读 · 1 评论 -
[论文笔记]A Deep-Learning-Based Radio Resource Assignment Technique for 5G Ultra Dense Networks
序:这是一篇来自IEEE Network的期刊论文(影响力8.808),18年11月发表,到20年7月已经被引了45次。摘要因为网络流量特征难以描述为适用于学习类算法的输入和输出数据集,因此将DL应用于网络流量控制目前仍不成熟。在UDN中,高流量需求、波束成形和MIMO技术的兴起都使得网络流量变的更加多变和复杂。因此对于5G网络运营商而言,以有效的方式进行无线电资源控制而不是采用传统的F/TDD使非常重要的。这是因为在基于波束成形和MIMO的UDN中,使用现存的动态TDD方法进行上行/下行链路配原创 2020-07-01 22:31:11 · 814 阅读 · 0 评论 -
[论文笔记]Integrated Networking, Caching, and Computing for Connected Vehicles: A DRL Approach
目前大部分工作将网络、缓存、计算分立研究并优化,但本文将这三者进行联合优化,提出一个集成的动态管理架构。本文将此框架中的资源分配策略指定为一个联合优化问题,其综合考虑了网络、缓存、和计算的效用。对于系统的复杂性使用DRL的方法加以解决。结论及未来工作本文将网络、缓存、计算资源联合优化以提高车辆网络性能。基于SDN的可编程控制原理和ICN的缓存原理,我们提出一个集成的网络、缓存、计算资源的动态编排框架。通过深度强化学习方法加以解决,并给出了不同场景下算法的收敛性。未来将在该框架下考虑能效的提升。介原创 2020-06-12 10:37:22 · 1319 阅读 · 1 评论 -
[论文笔记]Three-Dimensional Resource Allocation in D2D-Based V2V Communication
D2D通信技术是3GPP R14中对于V2X的主要推动技术。在这种情况下,UE既可以直接与基础设施通信也可以通过中介节点连接基础设施,UE还可以直接与设备进行通讯,无论基础设施支持与否。由于车辆的快速移动,蜂窝UE与车载UE对服务质量的要求不同,而资源分配就是根据不同的QoS为UE分配合适的资源。本文介绍了共享上行资源的用户的UE的三种类型:两种车辆UE和手持移动电话类型的UE。根据三种类型UE的...原创 2020-05-02 21:53:24 · 2111 阅读 · 5 评论 -
[论文笔记]Trajectory Data Driven V2V/V2I Mode Switching and Bandwidth Allocation for Vehicle Networks
车辆的高机动性给车辆网络中高效可靠的通信带来挑战,其中的关键是如何实时处理大量的信道反馈信息以及如何更好地进行资源分配。本文提出一种利用轨迹数据的资源分配方法,其特点为减少CSI信息的反馈量并使V2VI协同工作。使用DNN和轨迹数据对V2V/I的模式进行训练。结论通过V2VI的智能切换和带宽分配,有效提升了车辆网络性能。与现有工作不同,每辆车的通信方式可以由BS自适应的调整。通过对车...原创 2020-05-02 11:22:26 · 1515 阅读 · 1 评论