代码阅读(1):adversarial-yolo

本文介绍了一种对抗性攻击方法,通过在目标对象上添加经过处理的对抗补丁,使YOLOv2无法识别人。算法包括对抗补丁的生成、位置定位、数据处理、损失函数计算(dev_loss, nps_loss, tv_loss)以及训练过程。关键代码涉及数据读取、损失计算和模型训练。" 112844987,10552745,Echarts折线图异常点变红及图例颜色修复,"['echarts', '数据可视化', '前端开发', 'JavaScript']
摘要由CSDN通过智能技术生成

原文地址:https://arxiv.org/abs/1904.08653

代码地址:https://github.com/marvis/pytorch-yolo2

一、算法原理

本文通过训练和添加对抗补丁,实现了一种untargeted攻击,可以使YOLOv2无法识别添加了补丁的人。本文的算法思想如下:

首先将随机生成的对抗补丁贴在图片上,此处应注意本文的对抗补丁的位置并不是任意的,一般是贴在需要被攻击的目标(此处是人)的中心。为了准确的将补丁贴到对应位置,adversarial-yolo算法会从label中找到图片中的目标位置,再向这些位置添加补丁。

添加补丁前,adversarial-yolo会对补丁进行旋转、加噪声、改变亮度等操作,这些操作是为了增加补丁在现实环境中的性能。

在添加完补丁后,将图像传入YOLO模型进行检测,使用YOLO的输出和补丁的一些性质计算loss,loss分三部分,如下:

  1.   dev_loss:yolo输出的置信度
  2.   nps_loss:non-printability score,表示patch不可打印的程度。
  3.   tv_loss:total variation,越小图像越平滑。

dev_loss是最重要的一个loss,说白了,它就是分类置信度(某个网格中存在目标的概率)和目标置信度(某个网格中的目标是某特定类的概率,比如人)的乘积的最大值,这个loss反映的是YOLO模型输出的置信度,我们的目标是要最小化这个置信度,故将其直接用于loss。

nps_loss指补丁无法被打印的程度,它的计算方法如下。c表示所有打印机能打印出的颜色。设置这个loss的目的是为了让生成的补丁能更准确的被打印出来,提高其在现实场景攻击的性能。

tv_loss为相邻像素点的欧式距离,表示图像的平滑程度,平滑变换的图像看上去显得比较真实,也能增加攻击的鲁棒性。

最后的loss = α * tv_loss + β * nps_loss + dev_loss,对这个总loss进行后向传播,就可以更新补丁了。

二、关键代码

1、数据读取补丁的生成和处理

此处对应项目中的load_data.py文件下对于数据读取和补丁添加与处理相对的内容,主要有以下代码:

# 用于对补丁进行各种变换
class PatchTransformer(nn.Module):
    ...
# 向图片上添加补丁
class PatchApplier(nn.Module):
    ...
# 读取Inria数据集中的数据,这个数据集可在‘http://pascal.inrialpes.fr/data/’中下载
# 主要类别就是human
class InriaDataset(Dataset):
    ...

关于这些代码的细节不是很重要,这里就不写了,感兴趣可以自行研究一下。

2、Loss的计算

本部分代码对应load_data.py中的相应部分。

上面说到,文章中loss的计算被分为了三个部分,首先是dev_loss的计算。dev_loss实际上就是YOLO输出的置信度,要解释如何计算dev_loss,首先需要理解YOLOv2的输出格式。本文所使用的YOLO模型最终会输出一个[batch, 5, 85, 19, 19]大小的tensor,其中batch即输入的组数,剩下四个量的意义为:

  • 5指的是5个anchor boxes(默认)
  • 85是每个格子的输出向量,由bx,by,bw,bh,pc和80个分类的预测概率组成,其中第一个分类(索引号为5)是person
  • 19为输出的特征图大小,因为yolo的格子数一般默认定义为19x19

我们所需要的loss就是分类置信度(pc)和一个分类(此处是human)的预测概率。故代码中首先将YOLO的输出变为了[batch, 85, 1805],因为我们需要的东西都在这85组值里,然后提取两个概率:

# 分类置信度,即pc,是85组数里的第5个(序号4),用sigmond处理转化为概率      
output_objectness = torch.sigmoid(output[:, 4, :])
# 抛弃掉前五个值,只留后面的目标置信度
output = output[:, 5:5 + self.num_cls , :]
# 用softmax处理转化为概率
normal_confs = torch.nn.S
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值