【目标检测-YOLO】博客阅读:Introduction to the YOLO Family

40 篇文章 5 订阅
本文详细介绍了YOLO(You Only Look Once)目标检测家族,从YOLOv1到YOLOv5以及PP-YOLO和YOLOX的发展历程。YOLO作为单级目标检测器,以其高效和准确的特点受到广泛关注。文章涵盖了YOLO系列的改进,如YOLOv2的Darknet-53架构,YOLOv3的更大输入尺寸,YOLOv4的多种技术融合,以及YOLOv5和PP-YOLO的优化。此外,文章还讨论了anchor-free的YOLOX,其在性能和速度上的提升。通过对YOLO家族的深入探讨,读者可以更好地理解每个变体的优缺点,为选择适合的YOLO版本提供参考。
摘要由CSDN通过智能技术生成

阅读收获

本文是博客:https://pyimagesearch.com/2022/04/04/introduction-to-the-yolo-family/ 的翻译。

好吧!其实在这里面并没有太多细节的信息,只是像个简单的介绍。但是,这激励我,后续会继续研究下 PP-YOLO系列(PP-YOLO,PP-YOLOv2, PP-YOLOE);Scaled-YOLOv4和Anchor-free的YOLOX。当然,本文并没有覆盖所有的YOLO模型,未来我会继续增加内容。


目录

阅读收获

介绍YOLO家族

介绍目标检测

挑战

目标检测的历史 

什么是单级目标检测器?

YOLOv1

YOLOv2

YOLOv3 

YOLOv4

YOLOv5

mosaic data augmentation

定量benchmark

YOLOv5 Nano 发布

YOLOv5n与YOLOv4-Tiny对比

PP-YOLO

PaddleDetection 

PP-YOLO性能

PP-YOLO架构

技巧和技术的选择

结果

消融研究

Scaled-YOLOv4 

什么是模型缩放?

在 YOLOv4上改进的Scaled-YOLOv4

Scaled-YOLOv4设计

CSP-ized YOLOv4

扩展 YOLOv4-Tiny 模型

扩展YOLOv4-CSP模型

数据增强

PP-YOLOv2

回顾PP-YOLO

改进的选择

YOLOX

YOLOX-Darknet53

YOLOv3-Baseline

Decoupled Head

强大的数据增强

Anchor-Free检测

Multi-Positives  

Other Backbones

Modified CSPNet in YOLOv5

Tiny and Nano Detectors

总结

引文信息

参考


介绍YOLO家族

目标检测是计算机视觉研究的重要课题之一。大多数计算机视觉问题都涉及到检测视觉对象类别,如行人、汽车、公共汽车、人脸等。这一领域不仅局限于学术界,而且在视频监控、医疗保健、车载传感和自动驾驶等领域具有潜在的现实商业用例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值