指数分布的概率密度推导

文章通过指数分布的无记忆性这一特性,深入浅出地推导了指数分布的概率密度函数,解释了分母中-theta的原因,并探讨了该分布的特点。知乎上的简洁回答提供了直观的理解,揭示了指数分布在理论和应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

指数分布的概率密度,一直理解的不够深入,一直都不明白为什么是这么奇怪的形式,指数位置的分母为什么有个-theta,也一直不太明白该分布的特点,直到看到如下篇博文:

指数分布概率密度推导1

指数分布概率密度推导2

知乎上,如下的回答最为简洁和通俗易懂:
万能的知乎,几乎没有无法治愈的疑难杂症!

在这里插入图片描述

注意:
指数分布概率密度推导的起点,从指数分布的无记忆性这个根本特点出发,才是最合乎逻辑和自然的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值