一道简单的积分题目

文章讨论了在实数域上关于自然对数lnx与x的关系,以及构造函数f(x)=lnx/(1+x^2)和g(x)=x/(1+x^2)进行比较。指出错误地认为f(x)<g(x),并分析了积分结果导致的误解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目如下图:
在这里插入图片描述

解法1:
在这里插入图片描述

解法2:
在这里插入图片描述

解法3:

错误做法: 在 x ∈ ( 0 , ∞ ) 上有 ln ⁡ x < x ,令 f ( x ) = ln ⁡ x 1 + x 2 , g ( x ) = x 1 + x 2 ∴ f ( x ) < g ( x ) ,而又 ∫ 0 + ∞ x 1 + x 2 d x = 1 2 ∫ 0 + ∞ 1 1 + x 2 d ( 1 + x 2 ) = 1 2 ln ⁡ ( 1 + x 2 ) ∣ 0 + ∞ = + ∞ \color{red} 错误做法:\\ 在x \in (0,\infty)上有 \ln x \lt x ,令f(x)= \frac{\ln x}{1+x^2},g(x)=\frac{x}{1+x^2} \\ ∴ f( x)< g( x) ,而又\int _0 ^{+\infty}\frac{x}{1+x^2} dx =\\ \frac{1}{2} \int _0 ^{+\infty}\frac{1}{1+x^2} d(1+x^2) = \\ \frac{1}{2} \ln(1+x^2)|_0^{+\infty} = + \infty 错误做法:x(0,)上有lnx<x,令f(x)=1+x2lnxg(x)1+x2xf(x)<g(x),而又0+1+x2xdx=210+1+x21d(1+x2)=21ln(1+x2)0+=+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值