三角形的外心、内心、重心、垂心、中心、费马点

  1. 三角形的外心

即三角形的外接圆的中心。此时:

A O = B O = C O AO = BO = CO AO=BO=CO

在这里插入图片描述

需要注意的有以下几点:

第一, A O D , B O E , C O F 不一定是直线,能否证明? \color{red}AOD,BOE,COF不一定是直线,能否证明? AODBOECOF不一定是直线,能否证明?

第二, ∠ B A C 等于 ∠ B O D , sin ⁡ ∠ A = a 2 / R = a 2 R \angle BAC等于\angle BOD, \sin \angle A = \frac{a}{2} /R=\frac{a}{2R} BAC等于BOD,sinA=2a/R=2Ra

第三, S △ A B C = 1 2 a b sin ⁡ ∠ C = 1 2 a b c 2 R = a b c 4 R S \triangle ABC = \frac{1}{2} ab \sin\angle C = \frac{1}{2}ab\frac{c}{2R} =\frac{abc}{4R} SABC=21absinC=21ab2Rc=4Rabc

  1. 三角形的内心

即内接圆的圆心。

需要注意的有以下几点:

第一, B O E , C O D , A O F 不一定是直线。 \color{red}BOE,COD, AOF 不一定是直线。 BOECOD,AOF不一定是直线。

第二, ∠ B O C = 90 ° + ∠ A \angle BOC = 90\degree +\angle A BOC=90°+A

证明: ∠ B O C = 180 ° − 180 ° − ∠ A 2 = 90 ° − ∠ A 2 \angle BOC = 180 \degree - \frac{180 \degree - \angle A}{2} =90\degree -\frac{\angle A}{2} BOC=180°2180°A=90°2A

第三, S △ A B C = 1 2 ( a + b + c ) r ( r 为内接圆半径 ) S_{\triangle ABC} =\frac{1}{2}(a+b+c)r(r为内接圆半径) SABC=21(a+b+c)r(r为内接圆半径)

第四, B D = B F = 1 2 ( a + c − b ) BD = BF = \frac{1}{2}(a + c - b) BD=BF=21(a+cb)

在这里插入图片描述

  1. 三角形的重心

三角形三条中线的交点。

性质:

第一, A O O E = 2 1 \frac{AO}{OE} = \frac{2}{1} OEAO=12

证明:延长AOE至G点并使得EG=OE,根据定理“对角线平分的四边形为平行四边形”可以证明OBGC为平行四边形,可得AO=OG,因此可以证明AO=2OE。

第二, S △ A O B = S △ C O B = S △ C O A S_{\triangle AOB} =S_{\triangle COB} =S_{\triangle COA} SAOB=SCOB=SCOA

证明:

第三,三个向量之和OA+OB+OC= 0

第四, A , B , , C 的坐标为 ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , 重心 O 点的坐标 x = x 1 + x 2 + x 3 2 , y = y 1 + y 2 + y 3 2 A,B,,C的坐标为(x_1,y_1),(x_2,y_2),(x_3,y_3),重心O点的坐标x=\frac{x_1 + x_2 + x_3}{2},y=\frac{y_1+y_2+y_3}{2} A,B,,C的坐标为(x1,y1),(x2,y2),(x3,y3),重心O点的坐标x=2x1+x2+x3,y=2y1+y2+y3

在这里插入图片描述

  1. 三角形的垂心

三角形三边上的高的交点。

  1. 三角形的中心

等边三角形的外心、内心、重心、垂心交于一点,该点称为三角形的中心。

  1. 三角形的费马点

在这里插入图片描述

在这里插入图片描述

关于三角形重心垂心及其相关的几何性质如下所述: --- **重心** 三角形重心是指三条中线交的位置。每条中线都是连接一个顶与其对面边中心的线段。 - 重心将每一中线分为两部分,其中靠近顶的部分是远离顶部分长度的两倍。 - 对于任意三角形,其重心总是位于内部。 - 如果以直角坐标系中的三 $(x_1,y_1)$, $(x_2,y_2)$ 和 $(x_3,y_3)$ 构成一个三角形,则该三角形重心 G 可由下面公式计算得出: $$G = \left(\frac{x_1 + x_2 + x_3}{3},\frac{y_1 + y_2 + y_3}{3}\right)$$ **垂心** 三角形垂心指的是三个高所在直线的交。高的定义是从一个顶垂直画到底边或者底边延长线上的一条线段。 - 锐角三角形垂心总是在三角形内部;钝角三角形垂心在外部;直角三角形垂心恰好就是直角所在的那个顶。 - 若设 H 是 ABC 的垂心,则有 AH⊥BC, BH⊥CA, CH⊥AB 成立。 **定理关联** 欧拉线是一个重要的定理,在任何非等边三角形中,外心 O、重心 G 和垂心 H 总共线,并且 HG=2GO。这条线被称为欧拉线。 此外,九圆也是一个重要概念,它通过了六个脚(即三边上的高足)、三个中以及垂心到各顶连线的中,这个圆的圆心正好在线段 GH 上,距离 H 的距离为 OH 距离的一半。 --- 为了更深入理解这些概念,可以参考以下相关问题:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值