论文解读|存储集中化对多地点报童问题中预期成本的影响
作者信息:
马玺渊(爱丁堡大学在读博士)
钟子俊(中国科学院大学在读硕士)
白静(东北财经大学在读博士)
1 概览
本文将通过解析 Eppen(1979) 关于多地点报童问题 (Multi-Location Newsvendor/Newsboy Problem) 的文章,对多地点报童问题进行简介,讨论集中化库存预期成本对多地点报童问题中的影响,并讨论由 Eppen(1979) 起相关文献的发展和未来研究方向的展望。
具体而言,我们将关注一个多地点报童问题,其中每个地点的需求服从正态分布,每个地点的线性持有和惩罚成本(linear holding and penalty cost)相同。通过合并多个地点的需求,Eppen(1979) 推导出每个地点预期持有和罚款成本的表达式,其作为每个地点需求参数的函数(包括期望、方差和相关系数),证明了:
- 分散式系统(decentralized system)相较于集中式系统(centralized system)体现了更高的预期持有和惩罚成本;
- 由互换两种系统而节省的预期持有和惩罚成本的幅度取决于各地点需求的相关性;
- 如果各地点的需求相同且不相关,那么成本将以合并需求数量的平方根增长。
2 问题描述
Eppen 研究了一家在全国范围内设有23个配送点的大型钢铁产品批发商。该公司现正考虑提高其库存系统的集中度,而集中化过程将会影响到现有的库存成本。我们将研究在合理的假设下,如何将持有和惩罚成本纳入涉及集中化的模型中,进而检查集中化过程对成本的影响。
该文章针对机会存储集中化的多地点报童问题,提出了多地点单周期单产品的基本模型,其中每个地点的需求两两不同。设 ξ i \xi_i ξi 表示地点 i i i ( i = 1 , … , N ) (i=1,\ldots,N) (i=1,…,N)的顾客需求,其中 ξ i \xi_i ξi服从正态分布, E ( ξ i ) = μ i \mathbb{E}(\xi_i)=\mu_i E(ξi)=μi, V a r ( ξ i ) = σ i 2 Var(\xi_i)=\sigma_i^2 Var(ξi)=σi2。对于任意两个不同的地点 i i i和 j j j,设 σ i j \sigma_{ij} σij为 ξ i \xi_i ξi和 ξ j \xi_j ξj的协方差, ρ i j \rho_{ij} ρij为相关系数;现假设每个地点需求的变异系数 σ i / μ i \sigma_i/\mu_i σi/μi充分小,以保证没有负需求出现。假设每个地点持有单独的库存,且每个地点对于所有来源的需求的持有和惩罚成本保持不变;特别地,假设在每个周期的末尾,系统将对每个地点当下库存水平所产生的线性持有或惩罚成本进行测算。
3 模型构建
基于上述问题描述和假设,在时段期末,计算地点 i i i以库存水平 y y y为起始的预期持有和惩罚成本如下:
H i ( y ) = ∫ − ∞ y h ( y − ξ ) ϕ i ( ξ ) d ξ + ∫ y ∞ p ( ξ − y ) ϕ i d ξ , H_i(y) = \int_{-\infty}^y h(y-\xi)\phi_i(\xi)\mathrm{d}\xi + \int_y^{\infty}p(\xi-y)\phi_i\mathrm{d}\xi, Hi(y)=∫−∞yh(y−ξ)ϕi(ξ)dξ+∫y∞p(ξ−y)ϕidξ,
其中 ϕ i ( ⋅ ) \phi_i(\cdot) ϕi(⋅)为 ξ i \xi_i ξi的密度函数, p p p和 h h h分别是单位惩罚和持有成本。经过推导,上式可发展为
H i ( y ) = h y − h μ i + ( h p ) σ i R ( y − p i σ ) , H_i(y)=hy-h\mu_i+(h_p)\sigma_iR(\frac{y-p_i}{\sigma}), Hi(y)=hy−hμi+(hp)σiR(σy−pi),
其中 R ( u ) R(u) R(u)在库存文献中广泛使用 (Johnson and Montgomery, 1974),
R ( u ) = ∫ u ∞ ( w − u ) 1 2 π