一、参考资料
TensorRT文档
Tar File Installation
TensorRT介绍、安装和测试
Ubuntu16.04 安装 TensorRT
二、测试环境
Environment
Operating System + Version: Ubuntu + 16.04
TensorRT Version: 7.1.3.4
GPU Type: GeForce GTX1650,4GB
Nvidia Driver Version: 470.63.01
CUDA Version: 11.0.207
CUDNN Version: 8.0.5
TensorRT:7.1.3.4
Python Version (if applicable): 3.7.3
PyTorch Version (if applicable): 1.3.0+cu100
torchvision:0.4.1+cu100
Anaconda Version:4.10.3
gcc:7.5.0
g++:7.5.0
三、安装TensorRT
0. 重要说明
- 以tar 方式安装TensorRT,支持多版本管理。
- 如果已经安装了CUDA,则根据当前CUDA和cuDNN版本,再确定需要安装的TensorRT版本。不推荐安装最新的CUDA版本,可能导致TensorRT不支持。
- 如果未安装CUDA,则先确定需要安装的TensorRT版本,再确定对应的CUDA和cuDNN版本。
1. 准备工作
1.1 安装Python
推荐安装anconda虚拟环境,通过conda管理python版本。详细步骤,请参考另一篇博客:Anaconda在Ubuntu下的安装与简单使用
conda create -n xxx python=3.7.0
conda activate xxx
1.2 安装CUDA和cuDNN
安装CUDA 11.0,安装cuDNN 8.0.5。
注意CUDA与cuDNN版本对齐。详细步骤,请参考以下博客:
Ubuntu下CUDA的安装及配置(run方式)
Ubuntu下CUDA的卸载以及安装(deb方式和run方式)
2. 下载TensorRT
下载TensorRT: https://developer.nvidia.com/nvidia-tensorrt-download
本文以 TensorRT 7.1.3.4
为例,以tar包方式安装 tensorrt。
下载TensorRT并解压tar软件包。
tar -xvzf TensorRT-7.1.3.4.Ubuntu-16.04.x86_64-gnu.cuda-11.0.cudnn8.0.tar.gz
3. 设置环境变量
gedit ~/.bashrc
# 添加
export PATH=/PATH/TO/TensorRT-7.1.3.4/bin:${PATH}
export LD_LIBRARY_PATH=/PATH/TO/TensorRT-7.1.3.4/lib:${LD_LIBRARY_PATH}
# 更新
source ~/.bashrc
4. 安装 TensorRT python
4.1 安装tensorrt
cd /PATH/TO/TensorRT-7.1.3.4/python
# 根据版本安装,博主的是python3.7版本,选择cp3.7
pip install tensorrt-7.1.3.4-cp37-none-linux_x86_64.whl
4.2 (可选)安装 UFF
UFF 支持tensorflow模型转化,TensorFlow 训练后的网络通过 UFF 编码方式转换给 TensorRT 运行。
cd /PATH/TO/TensorRT-7.1.3.4/uff
pip install uff-0.6.9-py2.py3-none-any.whl
# 测试 Python UFF 是否安装成功
which convert-to-uff
# 输出:
/home/yoyo/miniconda3/envs/tensorRT-tensorflow/bin/convert-to-uff
4.3 (可选)安装 graphsurgeon
graphsurgeon 支持自定义结构。graphsurgeon 是对UFF编码网络进行定制化操作的库,支持自定义结构,例如插入或删除神经网络某一层layer。
cd /PATH/TO/TensorRT-7.1.3.4/graphsurgeon
pip install graphsurgeon-0.4.5-py2.py3-none-any.whl
4.4 卸载 TensorRT python
pip uninstall tensorrt
pip uninstall uff
pip uninstall graphsurgeon
5. 验证安装
5.1 查看python api 版本
python
import tensorrt as trt
print(trt.__version__)
如果安装成功,输出:
7.1.3.4
5.2 测试 Python API
测试 Python API 的demo, 简单的手写字符识别模型lenet,采用tensorflow网络训练。
安装tensorflow,注意版本对齐,请参考: TensorFlow相关教程(经验版)
pip install tensorflow-gpu==2.4.0
训练模型:
cd /PATH/TO/TensorRT-7.1.3.4/samples/python/end_to_end_tensorflow_mnist
python model.py
# 模型训练完,将在models目录下生成 `lenet5.pb` 模型文件
模型转换:
convert-to-uff lenet5.pb
# 将pb文件转换为uff文件,打印出了模型转换的一些信息,生成了 `lenet5.uff` 文件
模型推理:
python sample.py
5.3 测试 C++ API
下载pgm文件:
python /PATH/TO/TensorRT-7.1.3.4/data/mnist/download_pgms.py
make编译:
cd /PATH/TO/TensorRT-7.1.3.4
sudo cp ./data/mnist/lenet5.uff ./python/data/mnist/lenet5.uff
cd ./samples/sampleMNIST
make clean
make
cd ../../bin(转到bin目录下面,make后的可执行文件在此目录下)
./sample_mnist
测试成功:
&&&& RUNNING TensorRT.sample_mnist # ./sample_mnist
[09/07/2021-13:45:35] [I] Building and running a GPU inference engine for MNIST
[09/07/2021-13:45:46] [I] [TRT] Detected 1 inputs and 1 output network tensors.
[09/07/2021-13:45:46] [I] Input:
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@%%+ -@@@@@@@
@@@@@@@@@%=.. -@@@@@@
@@@@@@@@@: #@@@@@
@@@@@@@@@+ ====: #@@@@@
@@@@@@@@@@%%%@@@@@. -@@@@@@
@@@@@@@@@@@@@@@@@* =@@@@@@
@@@@@@@@@@@@@@@@*: @@@@@@@
@@@@@@@@@@@@@@*. .@@@@@@@
@@@@@@@@@%+::: +%@@@@@@@
@@@@@@@@%. -@@@@@@@@@
@@@@@@@@%. *@@@@@@@@
@@@@@@@@@%+#%%%%= *@@@@@@@@
@@@@@@@@@@@@@@@@@ *@@@@@@@@
@@@@@@@@@@@@@@@@* *@@@@@@@@
@@@@@@@*@@@@@@@* *@@@@@@@@
@@@@@#: %@@@@@* #@@@@@@@@
@@@@@. =====: :*@@@@@@@@@
@@@@@. -@@@@@@@@@@@
@@@@@#- ..=%@@@@@@@@@@@@
@@@@@@@+ -+%@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@
[09/07/2021-13:45:46] [I] Output:
0:
1:
2:
3: **********
4:
5:
6:
7:
8:
9:
&&&& PASSED TensorRT.sample_mnist # ./sample_mnist
四、FAQ
Q:error while loading shared libraries: libcublas.so.10.0: cannot open shared object file: No such file or directory
ImportError: libnvinfer.so.6/libcublas.so.10.0: cannot open shared object file:问题解决
./sample_mnist: error while loading shared libraries: libcublas.so.10.0: cannot open shared object file: No such file or directory
错误原因:找不到 libcublas.so.10.0
文件。
解决方法:修改 /etc/ld.so.conf
文件。
# 修改配置
sudo gedit /etc/ld.so.conf
# 添加cuda路径
/usr/local/cuda/lib64
# 更新配置
sudo ldconfig
Q:找不到 libnvinfer.so.8
from .tensorrt import *
ImportError: libnvinfer.so.8: cannot open shared object file: No such file or directory
错误原因:找不到 tensorRT lib 路径。
解决方法:修改 /etc/ld.so.conf
文件。
sudo gedit /etc/ld.so.conf
# 添加 TensorRT lib 路径
/PATH/TO/TensorRT-7.1.3.4/lib
# 更新配置
sudo ldconfig
Q:软链接错误
sudo ldconfig
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8 不是符号连接
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 不是符号连接
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 不是符号连接
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 不是符号连接
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 不是符号连接
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 不是符号连接
/sbin/ldconfig.real: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 不是符号连接
解决方法:libcudnn.so.8 是一个文件,它本应是一个软连接,由此需要创建软链接。
sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8.0.5 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8
sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.0.5 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.0.5 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.0.5 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.0.5 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.0.5 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
sudo ln -sf /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.0.5 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
Q:sampleMNist测试失败
&&&& RUNNING TensorRT.sample_mnist # ./sample_mnist
[09/07/2021-12:03:21] [I] Building and running a GPU inference engine for MNIST
[09/07/2021-12:03:32] [I] [TRT] Detected 1 inputs and 1 output network tensors.
Could not find 0.pgm in data directories:
data/mnist/
data/samples/mnist/
&&&& FAILED
错误原因:没有pgm文件。
解决方法:下载pgm文件。
python /PATH/TO/TensorRT-7.1.3.4/data/mnist/download_pgms.py