Tensorrt安装及使用(python版本)

本文详细介绍了如何在Windows和Ubuntu系统上安装TensorRT,包括使用pip、下载文件和docker容器的方式,并展示了从PyTorch到ONNX再到TensorRT的模型转换步骤,以及如何验证和测试TensorRT引擎性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方的教程

tensorrt的安装:Installation Guide :: NVIDIA Deep Learning TensorRT Documentation

视频教程:TensorRT 教程 | 基于 8.6.1 版本 | 第一部分_哔哩哔哩_bilibili

代码教程:trt-samples-for-hackathon-cn/cookbook at master · NVIDIA/trt-samples-for-hackathon-cn (github.com)

Tensorrt的安装

官方的教程:

安装指南 :: NVIDIA Deep Learning TensorRT Documentation --- Installation Guide :: NVIDIA Deep Learning TensorRT Documentation

Tensorrt的安装方法主要有:

1、使用 pip install 进行安装;

2、下载 tar、zip、deb 文件进行安装;

3、使用docker容器进行安装:TensorRT Container Release Notes

Windows系统

首先选择和本机nVidia驱动、cuda版本、cudnn版本匹配的Tensorrt版本。

我使用的:cuda版本:11.4;cudnn版本:11.4

建议下载 zip 进行Tensorrt的安装,参考的教程:

windows安装tensorrt - 知乎 (zhihu.com)

Ubuntu系统

首先选择和本机nVidia驱动、cuda版本、cudnn版本匹配的Tensorrt版本。

我使用的:cuda版本:11.7;cudnn版本:8.9.0

1、使用 pip 进行安装:

pip install tensorrt==8.6.1

我这边安装失败

2、下载 deb 文件进行安装

os="ubuntuxx04" 
tag="8.x.x-cuda-x.x" 
sudo dpkg -i nv-tensorrt-local-repo-${os}-${tag}_1.0-1_amd64.deb 
sudo cp /var/nv-tensorrt-local-r
### Stivory简介 Stivory 是一种专注于数据存储与管理的技术方案,其核心理念在于提供高效的数据访问机制以及灵活的扩展能力[^1]。它通常被应用于大规模分布式系统中,能够支持高并发环境下的快速读写操作。 #### 技术特点 - **高性能**: 通过优化内存管理和磁盘I/O调度算法,显著提升数据处理速度。 - **可伸缩性**: 支持水平扩展架构设计,允许随着业务增长动态增加节点数量而不影响整体性能表现。 - **一致性保障**: 基于Paxos 或 Raft 协议实现强一致性的副本同步功能,在网络分区情况下仍能保持服务可用性和数据可靠性[^2]。 以下是基于Python模拟的一个简单例子来展示如何创建并初始化一个基本版stivory实例: ```python class SimpleStivory: def __init__(self): self.data_store = {} def put(self, key, value): """Insert or update a key-value pair.""" self.data_store[key] = value print(f"Inserted {key}: {value}") def get(self, key): """Retrieve the value associated with given key.""" val = self.data_store.get(key, None) if not val: print("Key does not exist.") else: print(f"Fetched Value: {val}") return val # Example Usage of above class definition. if __name__ == "__main__": stvry_obj = SimpleStivory() stvry_obj.put('test_key', 'hello world') fetched_val = stvry_obj.get('test_key') ``` 此代码片段仅作为概念验证用途,并未完全体现实际生产环境中所涉及复杂逻辑如持久化层构建、错误恢复策略制定等方面的内容[^3]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值