深入浅出理解空洞卷积/膨胀卷积/扩张卷积(Dilated/Atrous Convolution)

温故而知新,可以为师矣!

一、参考资料

github仓库:Multi-Scale Context Aggregation by Dilated Convolutions

图片素材来源:Convolution arithmetic

理解Dilation convolution

Dilated Convolution —— 空洞卷积(膨胀卷积)

膨胀卷积学习笔记

二、相关介绍

1. 标准卷积的计算公式

标准卷积的计算公式如下:
o = ⌊ i + 2 p − k s ⌋ + 1 i = size   of   input o = size   of   output p = p a d d i n g k = size   of   kernel s = s t r i d e s ( 1 ) o=\left\lfloor\frac{i+2p-k}{s}\right\rfloor+1 \quad \begin{array}{l} \\i=\textit{size of input}\\o=\textit{size of output}\\p=padding\\k=\textit{size of kernel}\\s=strides\end{array}\quad (1) o=si+2pk+1i=size of inputo=size of outputp=paddingk=size of kernels=strides(1)

三、空洞卷积(Dilated Convolution)相关介绍

1. 引言

1.1 增大感受野

用CNN进行图像处理时,通常需要经过多次卷积和pooling操作,pooling操作可以减少图像的尺寸,再使用卷积核可以增大感受野;多个卷积核堆叠也可以增大感受野。但是,在图像分割任务中,例如FCN[3],由于图像分割预测是 pixel-wise 的输出,所以要将pooling操作后较小尺寸的 feature map 通过 upsampling 的方法(如Conv2DTranspose转置卷积)恢复到原始图像尺寸,再进行预测。如下图所示:

在这里插入图片描述

因此,图像分割FCN中有两个关键,一个是pooling操作减小图像尺寸增大感受野,另一个是 upsampling 扩大图像尺寸。在先减小再增大尺寸的过程中,导致一些细节信息的损失。那么能不能设计一种新的操作,不通过pooling操作也能有较大的感受野看到更多的信息呢?答案就是Dilated Convolution

1.2 up-samplingpooling layer 存在的问题

图像分割任务中,较为著名的是 up-samplingpooling layer 的设计,但这些设计存在一些致命性的缺陷,主要问题有:

  • 参数不可学习:Up-sampling / pooling layer (e.g. bilinear interpolation) is deterministic。
  • 内部数据结构丢失,空间层级化信息丢失。
  • 小物体信息无法重建:如果一个物体占4x4的像素,则经过4次pooling操作之后,物体的信息就无法重构了。换句话说,假设有4个pooling layer,则任何小于 2 4 = 16 p i x e l 2^4=16 pixel 24=16pixel 的物体信息将理论上无法重建。
  • pooling操作是不可逆转的,通过对 feature map 进行 upsampling 还原图像尺寸时丢失信息。

在这样问题的存在下,图像分割问题一直处在瓶颈期无法再明显提高精度, 而 Dilated Convolution 的设计很好的避免了这些问题。

2. Dilated Convolution 与标准卷积的区别

空洞卷积/膨胀卷积/扩张卷积( Dilated/Atrous Convolution),是一种通过增加卷积核(kernel)元素间距(padding 0)使得感受野增加的一种卷积方式。

关于标准卷积的相关介绍,请查阅另一篇博客:关于CNN卷积神经网络与Conv2D标准卷积的重要概念

标准卷积的 dilation rate=1,如下图所示:

在这里插入图片描述
输入特征图(蓝色): ( H i n , W i n ) = ( 5 , 5 ) (H_{in},W_{in})=(5,5) (Hin,Win)=(5,5)
标准卷积核: k e r n e l _ s i z e ( k ) = 3 , s t r i d e ( s ) = 2 , p a d d i n g = 1 kernel\_size(k)=3,stride(s)=2,padding=1 kernel_size(k)=3,stride(s)=2padding=1
输出特征图(绿色): ( H o u t , W o u t ) = ( 3 , 3 ) (H_{out},W_{out})=(3,3) (Hout,Wout)=(3,3)

Dilated Convolutiondilation rate=2,即卷积的空洞为2,如下图所示:

在这里插入图片描述

输入特征图(蓝色): ( H i n , W i n ) = ( 7 , 7 ) (H_{in},W_{in})=(7,7) (Hin,Win)=(7,7)
标准卷积核: k e r n e l _ s i z e ( k ) = 3 , s t r i d e ( s ) = 1 , p a d d i n g = 0 kernel\_size(k)=3,stride(s)=1,padding=0 kernel_size(k)=3,stride(s)=1padding=0
输出特征图(绿色): ( H o u t , W o u t ) = ( 3 , 3 ) (H_{out},W_{out})=(3,3) (Hout,Wout)=(3,3)

3. Conv2DTransposeDilated Convolution的区别

Conv2DTranspose 其中的一个用途是做upsampling,即增大图像尺寸。而 Dilated Convolution 并不是做upsampling,而是增大感受野。

Dilated Convolution 不是在像素之间padding空白的像素,而是在已有的像素上,skip掉一些像素,或者输入不变,对conv的kernel参数中插一些0的weight,达到一次卷积看到的空间范围变大的目的。

当然将标准卷积的 stride 步长设为大于1,也会达到增大感受野的效果,但是 stride 大于1就会导致 downsampling,图像尺寸变小。

4. Dilated Convolution 的感受野

原始论文:[4]

如下图所示,三个卷积核尺寸都是3x3。

在这里插入图片描述

(a)图中的卷积为标准卷积,即 dilation rate=1,此时这个卷积核的感受野大小为3x3。
(b)图中采用 Dilated Convolutiondilation rate=2,即卷积的空洞为1。此时每个卷积操作的点的感受野为3x3,整个卷积核的感受野为7x7。
(c)图中采用Dilated Convolutiondilation rate=4,即卷积的空洞为3。此时每个卷积操作的点的感受野为7x7,整个卷积核的感受野为15x15。

5. dilation rate

Dilated Convolution是在标准卷积Convolution map的基础上注入空洞,以此来增加感受野(reception field)。因此,Dilated Convolution在标准卷积的基础上多了一个超参数(hyper-parameter)称之为膨胀率(dilation rate),表示卷积核的间隔dilation rate 控制卷积时的padding 以及 dilation rate,通过不同的填充以及与膨胀,可以获取不同尺度的感受野,提取多尺度的信息。

如下图所示,Dilated Convolution与标准卷积采用的都是3x3卷积核,标准卷积的 dilation rate 为1,Dilated Convolutiondilation rate 为2。
在这里插入图片描述

6. Dilated Convolution 的计算公式

直观理解Dilated Convolution

Dilated Convolution 是特殊的卷积计算,计算公式服从标准卷积的计算。

6.1 公式推导

假设卷积核尺寸大小为k,则卷积核有 (k-1) 个间隔。dilation rate为d,则卷积核的每个间隔需要填充 (d-1) 个零元素,一共需要填充 (k-1)*(d-1) 个零元素。

可以理解为,在原来的 k-1 个间隔中充填 d-1 行(列)零元素,得到一个新的 k ′ k^\prime k
k ′ = ( k − 1 ) ( d − 1 ) + k = ( k − 1 ) d + 1 ( 2 ) k'=(k-1)(d-1)+k=(k-1)d+1\quad (2) k=(k1)(d1)+k=(k1)d+1(2)
k ′ k^\prime k 代入 公式 ( 1 ) 公式(1) 公式(1),可得:
o = ⌊ i + 2 p − [ ( k − 1 ) d + 1 ] s ⌋ + 1 i = size   of   input o = size   of   output p = p a d d i n g k = size   of   kernel s = s t r i d e s ( 3 ) o=\left\lfloor\frac{i+2p-[(k-1)d+1]}{s}\right\rfloor+1 \quad \begin{array}{l} \\i=\textit{size of input}\\o=\textit{size of output}\\p=padding\\k=\textit{size of kernel}\\s=strides\end{array}\quad (3) o=si+2p[(k1)d+1]+1i=size of inputo=size of outputp=paddingk=size of kernels=strides(3)

6.2 计算示例

下图中,i=7, stride=1, padding=0, k=3, dilation rate=2

在这里插入图片描述

将已知条件代入 公式 ( 2 ) 公式(2) 公式(2),可得:
k ′ = ( k − 1 ) d + 1 = ( 3 − 1 ) ∗ 2 + 1 = 5 k'=(k-1)d+1=(3-1)*2+1=5 k=(k1)d+1=(31)2+1=5
可以理解为 kernel size 从3x3 变成了5x5,只是原来的3x3的位置有权值,其余位置均为0。

将已知条件代入 公式 ( 3 ) 公式(3) 公式(3),计算输出特征图尺寸为:
o = ⌊ 7 − 0 − [ ( 3 − 1 ) ∗ 2 + 1 ] 1 ⌋ + 1 = 3 o=\left\lfloor\frac{7-0-[(3-1)*2+1]}{1}\right\rfloor+1=3 o=170[(31)2+1]+1=3

7. Dilated Convolution 的应用

Dilated Convolution 代替了传统的 max-poolingstrided convolution,能够增大感受野,并保持 feature map 的尺寸和原始图片大小。

Dilated Convolution 的好处是不做pooling损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。在图像需要全局信息或者语音文本需要较长的sequence信息依赖的问题中,都能很好的应用 Dilated Convolution,比如图像分割[3]、语音合成WaveNet[2]、机器翻译ByteNet[1]中。

8. Dilated Convolution存在的问题

  • 栅格效应(The Gridding Effect)

    如果我们叠加多个相同的Dilated Convolution,会发现感受野中有很多像素没有利用上,出现大量空洞。此时,会丢失数据之间的连续性和完整性,不利于学习。如下图所示,展示了连续进行3次相同Dilated Convolution的效果(卷积核大小为3x3,dilation rate=2)。
    在这里插入图片描述

  • Long-ranged information might be not relevant

    Dilated Convolution 的设计是为了获取 long-range-information,有些长距离信息和当前点是完全不相关的,会影响数据的一致性。并且,仅采用大的 dilation rate 的信息,可能对大物体有较好的分割效果,而对小物体可能有弊无利。如何同时处理好大物体和小物体的关系,则是设计好Dilated Convolution网络的关键。

9. 混合膨胀卷积 (HDC)

混合膨胀卷积 (Hybrid Dilated Convolution,HDC)。

  1. 不同的卷积层使用不同的 dilation rate。对于一组Dilated Convolution,设置不同的 dilation rate,且dilation rate逐渐增大。例如,3个卷积核可以分别设置 dilation rate 为 [1, 2, 4]。这样最后一层有比较大的感受野,同时不会丢失大量的局部信息。如下图所示:
    在这里插入图片描述

  2. 使多个Dilated Convolution后的感受野内不存在空洞。假设有n个膨胀卷积核,dilation rate 分别是 [r1, r2,…, rn]。如果 [r1, r2,…, rn] 能使下式成立,则说明感受野不会存在空洞。
    在这里插入图片描述
    ​ 上式中的 M i M_i Mi 指的是第 i 层可以使用的最大的 dilation rate,K是卷积核尺寸。

三、相关经验

1. GrabAR

GrabAR: Occlusion-aware Grabbing Virtual Objects in AR
附件:Supplementary material, A. GrabAR-Net architecture details

四、参考文献

[1] Kalchbrenner N, Espeholt L, Simonyan K, et al. Neural machine translation in linear time[J]. arxiv preprint arxiv:1610.10099, 2016.
[2] Oord A, Dieleman S, Zen H, et al. Wavenet: A generative model for raw audio[J]. arxiv preprint arxiv:1609.03499, 2016.
[3] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[4] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.

  • 23
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花花少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值