基于Matlab程序改进鲸鱼算法(GSWOA)
1.在鲸鱼位置更新公式中加入自适应权重,动态调节最优位置的影响力,改善算法收敛速度
2.使用变螺旋位置更新策略,动态调整螺旋的形状,提升算法全局搜寻能力
3.引入最优邻域扰动策略,避免算法陷入局部最优解,解决算法早熟现象。
基于 改进鲸鱼优化算法(GSWOA, Gaussian Spiral Whale Optimization Algorithm) 的 MATLAB 实现。该算法在标准鲸鱼优化算法(WOA)的基础上引入了高斯扰动和螺旋更新机制,以提高全局搜索能力和收敛速度。
程序说明
-
鲸鱼优化算法(WOA)简介:
- WOA 是一种基于座头鲸捕猎行为的元启发式优化算法。
- 它通过模拟包围猎物、螺旋运动和随机搜索三种行为来寻找最优解。
-
改进点(GSWOA):
- 高斯扰动:在位置更新过程中加入高斯噪声,增强种群多样性。
- 螺旋更新机制:改进螺旋运动公式,使搜索更精细。
-
适用场景:
- 函数优化问题。
- 工程优化问题。
- 机器学习超参数调优等。
MATLAB 代码
% 改进鲸鱼优化算法 (GSWOA)
clc;
clear;
%% 参数定义
dim = 10; % 问题维度
SearchAgents_no = 30; % 种群大小
Max_iter = 500; % 最大迭代次数
lb = -10; % 下界
ub = 10; % 上界
% 初始化种群
Positions = rand(SearchAgents_no, dim) .* (ub - lb) + lb;
% 初始化最佳解
Best_score = inf;
Best_pos = zeros(1, dim);
Convergence_curve = zeros(1, Max_iter);
%% 主循环
for t = 1:Max_iter
for i = 1:SearchAgents_no
% 边界处理
Positions(i, :) = max(min(Positions(i, :), ub), lb);
% 计算适应度值
fitness = objectiveFunction(Positions(i, :));
% 更新最佳解
if fitness < Best_score
Best_score = fitness;
Best_pos = Positions(i, :);
end
end
a = 2 - t * (2 / Max_iter); % 线性递减因子
for i = 1:SearchAgents_no
r1 = rand(); % 随机数 [0, 1]
r2 = rand(); % 随机数 [0, 1]
A = 2 * a * r1 - a; % 系数 A
C = 2 * r2; % 系数 C
p = rand(); % 概率因子
if p < 0.5
if abs(A) < 1
% 包围猎物
D = abs(C * Best_pos - Positions(i, :));
Positions(i, :) = Best_pos - A .* D;
else
% 随机搜索
rand_leader_index = floor(SearchAgents_no * rand()) + 1;
X_rand = Positions(rand_leader_index, :);
D_X_rand = abs(C * X_rand - Positions(i, :));
Positions(i, :) = X_rand - A .* D_X_rand;
end
else
% 螺旋更新
b = 1; % 螺旋常数
l = (rand() - 0.5) * 2; % [-1, 1] 之间的随机数
D_Leader = abs(Best_pos - Positions(i, :));
Positions(i, :) = D_Leader .* exp(b .* l) .* cos(2 * pi * l) + Best_pos;
% 高斯扰动
gaussian_noise = randn(1, dim) * 0.1; % 高斯噪声
Positions(i, :) = Positions(i, :) + gaussian_noise;
end
end
% 边界处理
Positions = max(min(Positions, ub), lb);
% 保存收敛曲线
Convergence_curve(t) = Best_score;
end
%% 输出结果
disp('最优解:');
disp(Best_pos);
disp('最优目标函数值:');
disp(Best_score);
%% 绘图
figure;
plot(1:Max_iter, Convergence_curve, 'r', 'LineWidth', 1.5);
xlabel('迭代次数');
ylabel('目标函数值');
title('GSWOA 收敛曲线');
grid on;
%% 目标函数
function f = objectiveFunction(x)
% Sphere 函数(示例目标函数)
f = sum(x.^2);
end
代码说明
-
初始化:
- 随机生成初始种群,并设置上下界。
- 使用
objectiveFunction
定义目标函数(示例中为 Sphere 函数)。
-
主循环:
- 根据概率选择包围猎物、随机搜索或螺旋更新。
- 引入高斯扰动以增强种群多样性。
-
边界处理:
- 确保每个个体的位置在搜索范围内。
-
收敛曲线:
- 记录每一代的最佳目标函数值,用于绘制收敛曲线。
示例输出
运行代码后,将显示如下内容:
- 最优解及其对应的目标函数值。
- GSWOA 的收敛曲线,展示目标函数值随迭代次数的变化。
注意事项
-
目标函数替换:
- 可以将
objectiveFunction
替换为其他复杂函数(如 Rastrigin、Ackley 等)。
- 可以将
-
参数调整:
- 调整种群大小、最大迭代次数和边界范围以适应具体问题。
-
扩展应用:
- 结合约束处理方法解决约束优化问题。
- 应用于工程优化或机器学习模型的超参数调优。