基于Matlab程序改进鲸鱼算法(GSWOA)

基于Matlab程序改进鲸鱼算法(GSWOA)

1.在鲸鱼位置更新公式中加入自适应权重,动态调节最优位置的影响力,改善算法收敛速度
2.使用变螺旋位置更新策略,动态调整螺旋的形状,提升算法全局搜寻能力
3.引入最优邻域扰动策略,避免算法陷入局部最优解,解决算法早熟现象。

在这里插入图片描述
基于 改进鲸鱼优化算法(GSWOA, Gaussian Spiral Whale Optimization Algorithm) 的 MATLAB 实现。该算法在标准鲸鱼优化算法(WOA)的基础上引入了高斯扰动和螺旋更新机制,以提高全局搜索能力和收敛速度。


程序说明

  1. 鲸鱼优化算法(WOA)简介

    • WOA 是一种基于座头鲸捕猎行为的元启发式优化算法。
    • 它通过模拟包围猎物、螺旋运动和随机搜索三种行为来寻找最优解。
  2. 改进点(GSWOA)

    • 高斯扰动:在位置更新过程中加入高斯噪声,增强种群多样性。
    • 螺旋更新机制:改进螺旋运动公式,使搜索更精细。
  3. 适用场景

    • 函数优化问题。
    • 工程优化问题。
    • 机器学习超参数调优等。

MATLAB 代码

% 改进鲸鱼优化算法 (GSWOA)
clc;
clear;

%% 参数定义
dim = 10; % 问题维度
SearchAgents_no = 30; % 种群大小
Max_iter = 500; % 最大迭代次数
lb = -10; % 下界
ub = 10; % 上界

% 初始化种群
Positions = rand(SearchAgents_no, dim) .* (ub - lb) + lb;

% 初始化最佳解
Best_score = inf;
Best_pos = zeros(1, dim);

Convergence_curve = zeros(1, Max_iter);

%% 主循环
for t = 1:Max_iter
    for i = 1:SearchAgents_no
        % 边界处理
        Positions(i, :) = max(min(Positions(i, :), ub), lb);
        
        % 计算适应度值
        fitness = objectiveFunction(Positions(i, :));
        
        % 更新最佳解
        if fitness < Best_score
            Best_score = fitness;
            Best_pos = Positions(i, :);
        end
    end
    
    a = 2 - t * (2 / Max_iter); % 线性递减因子
    
    for i = 1:SearchAgents_no
        r1 = rand(); % 随机数 [0, 1]
        r2 = rand(); % 随机数 [0, 1]
        
        A = 2 * a * r1 - a; % 系数 A
        C = 2 * r2; % 系数 C
        
        p = rand(); % 概率因子
        
        if p < 0.5
            if abs(A) < 1
                % 包围猎物
                D = abs(C * Best_pos - Positions(i, :));
                Positions(i, :) = Best_pos - A .* D;
            else
                % 随机搜索
                rand_leader_index = floor(SearchAgents_no * rand()) + 1;
                X_rand = Positions(rand_leader_index, :);
                D_X_rand = abs(C * X_rand - Positions(i, :));
                Positions(i, :) = X_rand - A .* D_X_rand;
            end
        else
            % 螺旋更新
            b = 1; % 螺旋常数
            l = (rand() - 0.5) * 2; % [-1, 1] 之间的随机数
            D_Leader = abs(Best_pos - Positions(i, :));
            Positions(i, :) = D_Leader .* exp(b .* l) .* cos(2 * pi * l) + Best_pos;
            
            % 高斯扰动
            gaussian_noise = randn(1, dim) * 0.1; % 高斯噪声
            Positions(i, :) = Positions(i, :) + gaussian_noise;
        end
    end
    
    % 边界处理
    Positions = max(min(Positions, ub), lb);
    
    % 保存收敛曲线
    Convergence_curve(t) = Best_score;
end

%% 输出结果
disp('最优解:');
disp(Best_pos);
disp('最优目标函数值:');
disp(Best_score);

%% 绘图
figure;
plot(1:Max_iter, Convergence_curve, 'r', 'LineWidth', 1.5);
xlabel('迭代次数');
ylabel('目标函数值');
title('GSWOA 收敛曲线');
grid on;

%% 目标函数
function f = objectiveFunction(x)
    % Sphere 函数(示例目标函数)
    f = sum(x.^2);
end

代码说明

  1. 初始化

    • 随机生成初始种群,并设置上下界。
    • 使用 objectiveFunction 定义目标函数(示例中为 Sphere 函数)。
  2. 主循环

    • 根据概率选择包围猎物、随机搜索或螺旋更新。
    • 引入高斯扰动以增强种群多样性。
  3. 边界处理

    • 确保每个个体的位置在搜索范围内。
  4. 收敛曲线

    • 记录每一代的最佳目标函数值,用于绘制收敛曲线。

示例输出

运行代码后,将显示如下内容:

  1. 最优解及其对应的目标函数值。
  2. GSWOA 的收敛曲线,展示目标函数值随迭代次数的变化。

注意事项

  1. 目标函数替换

    • 可以将 objectiveFunction 替换为其他复杂函数(如 Rastrigin、Ackley 等)。
  2. 参数调整

    • 调整种群大小、最大迭代次数和边界范围以适应具体问题。
  3. 扩展应用

    • 结合约束处理方法解决约束优化问题。
    • 应用于工程优化或机器学习模型的超参数调优。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值