经过rpn网络得到候选框。是对每一层特征图都用FPN的:
proposals, proposal_losses = self.rpn(images, features, targets)
看下 RPNModule(torch.nn.Module):会返回num_anchors。处理步骤有
1)anchor_generator = make_anchor_generator(cfg) #生成anchors 可查看rpn\anchor_generator.py
2)registry.RPN_HEADS.register("SingleConvRPNHead")
head = rpn_head( cfg, in_channels, anchor_generator.num_anchors_per_location()[0])
添加RPN Head对anchors进行classification and regression。返回值是logits, bbox_reg 这里是对p的各个特征图进行3*3卷积,每个位置都生成结果。
3)对train和test差别处理。(NMS等)保留一定数量的proposals。还是P2~P6每层都一样。来看下数据设置:#保留的RPN proposals个数 after combining proposals from all FPN levels fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN #2000 if not is_train: fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST #1000 #保留的RPN proposals个数 before applying NMS #而用FPN的话是指每一个FPN层保留的个数(not total) pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TRAIN #2000 #applying NMS 那么这里是每一层保留的 还是总的,应该是总的,那就是12000→2000。因为default在不用fpn是保留12000的 post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TRAIN #2000 if not is_train: pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TEST #1000 post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TEST #1000(1000*6→1000) nms_thresh = config.MODEL.RPN.NMS_THRESH # 0.7 min_size = config.MODEL.RPN.MIN_SIZE #0
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn
from maskrcnn_benchmark.modeling import registry
from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from maskrcnn_benchmark.modeling.rpn.retinanet.retinanet import build_retinanet
from .loss import make_rpn_loss_evaluator
from .anchor_generator import make_anchor_generator
from .inference import make_rpn_postprocessor
class RPNHeadConvRegressor(nn.Module):
"""
A simple RPN Head for classification and bbox regression
"""
def __init__(self, cfg, in_channels, num_anchors):
"""
Arguments:
cfg : config
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
"""
super(RPNHeadConvRegressor, self).__init__()
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
self.bbox_pred = nn.Conv2d(
in_channels, num_anchors * 4, kernel_size=1, stride=1
)
for l in [self.cls_logits, self.bbox_pred]:
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
def forward(self, x):
assert isinstance(x, (list, tuple))
logits = [self.cls_logits(y) for y in x]
bbox_reg = [self.bbox_pred(y) for y in x]
return logits, bbox_reg
class RPNHeadFeatureSingleConv(nn.Module):
"""
Adds a simple RPN Head with one conv to extract the feature
"""
def __init__(self, cfg, in_channels):
"""
Arguments:
cfg : config
in_channels (int): number of channels of the input feature
"""
super(RPNHeadFeatureSingleConv, self).__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
for l in [self.conv]:
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
self.out_channels = in_channels
def forward(self, x):
assert isinstance(x, (list, tuple))
x = [F.relu(self.conv(z)) for z in x]
return x
@registry.RPN_HEADS.register("SingleConvRPNHead")
class RPNHead(nn.Module):
"""
Adds a simple RPN Head with classification and regression heads
"""
def __init__(self, cfg, in_channels, num_anchors):
"""
Arguments:
cfg : config
in_channels (int): number of channels of the input feature =256
num_anchors (int): number of anchors to be predicted
"""
super(RPNHead, self).__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
) #在哪里加的卷积????
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
self.bbox_pred = nn.Conv2d(
in_channels, num_anchors * 4, kernel_size=1, stride=1
)
for l in [self.conv, self.cls_logits, self.bbox_pred]:
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
def forward(self, x):
logits = []
bbox_reg = []
for feature in x:
t = F.relu(self.conv(feature))
logits.append(self.cls_logits(t))
bbox_reg.append(self.bbox_pred(t))
return logits, bbox_reg
class RPNModule(torch.nn.Module):
"""
Module for RPN computation. Takes feature maps from the backbone and RPN
proposals and losses. Works for both FPN and non-FPN.
"""
def __init__(self, cfg, in_channels): #in_channels=256
super(RPNModule, self).__init__()
self.cfg = cfg.clone()
anchor_generator = make_anchor_generator(cfg) #生成anchors return anchors
rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD] #对谁呢???
#@registry.RPN_HEADS.register("SingleConvRPNHead") 也属于RPN部分,多生成一层用于classification and regression。也就是P6
#in_channels=256
head = rpn_head(
cfg, in_channels, anchor_generator.num_anchors_per_location()[0]
)
rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True)
box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False)
loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder)
self.anchor_generator = anchor_generator
self.head = head
self.box_selector_train = box_selector_train
self.box_selector_test = box_selector_test
self.loss_evaluator = loss_evaluator
def forward(self, images, features, targets=None):
"""
Arguments:
images (ImageList): images for which we want to compute the predictions
features (list[Tensor]): features computed from the images that are
used for computing the predictions(FPN得到的features变量信息,tuple类型,p2~p5,5个特征图的tensor). Each tensor in the list
correspond to different feature levels
targets (list[BoxList): ground-truth boxes present in the image (optional)
Returns:
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per
image.
losses (dict[Tensor]): the losses for the model during training. During
testing, it is an empty dict.
"""
objectness, rpn_box_regression = self.head(features)
anchors = self.anchor_generator(images, features)
if self.training:
return self._forward_train(anchors, objectness, rpn_box_regression, targets)
else:
return self._forward_test(anchors, objectness, rpn_box_regression)
def _forward_train(self, anchors, objectness, rpn_box_regression, targets):
if self.cfg.MODEL.RPN_ONLY:
# When training an RPN-only model, the loss is determined by the
# predicted objectness and rpn_box_regression values and there is
# no need to transform the anchors into predicted boxes; this is an
# optimization that avoids the unnecessary transformation.
boxes = anchors
else:
# For end-to-end models, anchors must be transformed into boxes and
# sampled into a training batch.
with torch.no_grad():
boxes = self.box_selector_train(
anchors, objectness, rpn_box_regression, targets
)
loss_objectness, loss_rpn_box_reg = self.loss_evaluator(
anchors, objectness, rpn_box_regression, targets
)
losses = {
"loss_objectness": loss_objectness,
"loss_rpn_box_reg": loss_rpn_box_reg,
}
return boxes, losses
def _forward_test(self, anchors, objectness, rpn_box_regression):
boxes = self.box_selector_test(anchors, objectness, rpn_box_regression)
if self.cfg.MODEL.RPN_ONLY:
# For end-to-end models, the RPN proposals are an intermediate state
# and don't bother to sort them in decreasing score order. For RPN-only
# models, the proposals are the final output and we return them in
# high-to-low confidence order.
inds = [
box.get_field("objectness").sort(descending=True)[1] for box in boxes
]
boxes = [box[ind] for box, ind in zip(boxes, inds)]
return boxes, {}
def build_rpn(cfg, in_channels): ##256
"""
This gives the gist of it. Not super important because it doesn't change as much
"""
if cfg.MODEL.RETINANET_ON:
return build_retinanet(cfg, in_channels)
return RPNModule(cfg, in_channels)