Ollama+deepseek-r1-1.5b+chatbox本地部署

引言
‌      Ollama是一个开源的大型语言模型服务工具,它帮助用户快速在本地运行大模型。通过简单的安装指令,用户可以执行一条命令就在本地运行开源大型语言模型,Ollama极大地简化了在Docker容器内部署和管理LLM的过程,使得用户能够快速地在本地运行大型语言模型。

      解决下面两种场景:

a. Ollama+deepseek-R1-1.5B+chatbox本地部署
b. vscode+cline+ollama+deepseek-R1辅助编程  

1. 访问官网下载:Ollama官网下载

2 配置系统环境变量,用于chatbox访问和deepseek安装目录。

1) OLLAMA_MODELS:E:\AI\models

2)OLLAMA_HOST:0.0.0.0

3)OLLAMA_ORIGINS:*

安装成功后如果你打开Win+R输入cmd打开后输入命令:

ollama -v

注意:需要配置Ollama的模型下载地址,如果不配置则会把几个G的开源模型安装到你的C盘上!

### Ollama DeepSeek-R1 1.5B API 功能特性 Ollama DeepSeek-R1 1.5B 是一款专注于自然语言处理的任务型模型,其API设计旨在提供离线环境下的高效性能和服务。该版本的API不支持联网问答功能[^1]。 #### 支持的模型列表 对于Ollama平台而言,除了DeepSeek-R1 1.5B之外,还可能兼容其他类型的预训练模型,具体取决于官方文档中的说明。然而,在提及的支持范围内,并未特别指出Gemini-2.0-flash 或 Perplexity作为默认选项被包含其中。 关于Chatbox AI models, 这一工具允许用户通过浏览器访问并配置不同的AI服务提供商及其对应的主机地址与特定模型名称来实现交互体验优化的目的[^3]。 #### 功能对比分析 当比较不同API之间的能力时,可以考虑以下几个方面: - **网络依赖度**:如前所述,Ollama DeepSeek-R1 1.5B 的API不允许直接连接互联网获取实时数据;而某些其他的API可能会具备此功能。 - **集成灵活性**:像VSCode这样的开发环境中集成了Cline、Ollama以及DeepSeek-R1辅助编程的应用场景展示了高度灵活的服务组合方式[^2]。 - **易用性和可定制化程度**:基于Web界面操作简便性的考量,Chatbox提供了图形化的设置向导帮助快速上手使用各种第三方提供的AI解决方案。 ```python # 示例代码展示如何调用本地部署OLLAMA DEEPEEK R1 1.5B 模型进行推理预测 import requests def query_local_model(prompt_text): url = "http://localhost:8000/predict" payload = {"input": prompt_text} response = requests.post(url, json=payload).json() return response['output'] prompt_example = "What is the capital of France?" result = query_local_model(prompt_example) print(f"The model's answer to '{prompt_example}' is {result}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值