卷积神经网络CNN是为解决图像识别问题设计的,也可用于时间序列信号,针对难以人工理解提取的特征,可自动提取
CNN最大的特点是卷积的权值共享结构,可减少网络参数量,防止过拟合
第一个卷积层只接受像素级的输入,每一个卷积操作只处理一小块图像,进行卷积变化后再传到后面的网络,每一层都会提取数据中最有效的特征,每一个卷积核会映射新的2D图像
非线性激活函数,最常用RELU,之前最常用Sigmoid,
权值共享:一个卷积层可以有多个不同的卷积核,每一个卷积核都对应一个新图像,新图像中每一个像素都来自完全相同的卷积核
若隐含层的每个节点都与10x10的像素相连,也就是每个隐含节点都有100个参数,不论图像多大都是这100个参数,即卷积核尺寸
参数量=卷积核尺寸,
需训练的权值数量=卷积核尺寸X卷积核数量
隐含层节点数=总像素/步长的平方
局部连接减低了网络的连接数,卷积核权值共享降低网络的参数量
如果只有一个卷积核就只能提取一个特征,可以增加卷积核的数量(而不是种类)来增加特征数量
一般第一个卷积层使用100个卷积核就足够了
多层抽象的卷积网络表达能力更强、效率更高,相比只使用一个隐含层提取全部的高阶特征,更节省参数
人工的卷积核不能放到CNN中,有悖于学习的概念,需要神经网络自己学习卷积核的参数
其他特征包括全局共享(一个卷积核滑动一整张图像),多核卷积(用一个卷积核只能提取一种空间结构或特征)
http://www.cnblogs.com/hans209/p/7103168.html
这句话意思应该是,多核卷积的意思是有多个卷积核,每种算法不同,参数量不同