Pycharm、Anaconda安装和TensorFlow的环境搭建总目录
1常识介绍
显卡:(GPU)
驱动:没有显卡驱动,就不能识别GPU硬件,不能调用其计算资源。
CUDA:GPU的并行计算框架
cudnn:针对深度卷积神经网络的加速库。
2显卡驱动安装
在命令行输入nvidia-smi (连着的,无空格)如果能正常显示,则跳过此步骤。
不能正常显示,说明显卡驱动未正确安装。
安装显卡驱动两种方法:
1、到电脑品牌官网下载显卡驱动。(一般比较稳定)
2、到显卡官网下载显卡驱动。(版本较新,如果电脑因为显卡驱动出问题,可以下载较新版本,可能解决了相关问题)
N卡驱动下载地址如下:(需要科-学-上-网)
https://www.nvidia.cn/Download/index.aspx?lang=cn
选择相关产品型号,下载慢的话,复制链接地址到迅雷下载。
3查看显卡驱动所对应的CUDA版本
查看显卡驱动所对应的CUDA版本的两种方法:
1、在命令行输入nvidia-smi 在右上角可查看到CUDA版本为 CUDA Version: 11.2
2、在显卡控制面板-系统信息-组件,查看对应的CUDA版本为11.2.154
4下载CUDA
下载CUDA和cuDNN时候可能会很慢,可以右键下载按钮,复制下载地址,到迅雷下载。
CUDA下载网站
https://developer.nvidia.com/cuda-downloads 最新版本
https://developer.nvidia.com/cuda-toolkit-archive 较早版本
本机下载的是11.2.2,应该是对应前两个版本号即可, 即11.2.x的都可以。
下载完后,双击运行弹出的文件夹路径为临时解压文件路径,默认即可,安装完成会删除。其余配置全部默认,直接下一步
5下载cuDNN
cuDNN下载网站(需要注册账号,但是注册时候要科-学-上-网,下载时候就不用了)
https://developer.nvidia.com/zh-cn/cudnn
下载CUDA11.x相对应的 cuDNN8.2.1 (下载cuDNN界面有显示对应关系,务必对应)
解压下载的文件,将三个文件,复制到CUDA的安装目录
6搭建tensorflow-gpu环境的步骤
首先查看tensorflow和cuda的对应关系
https://www.tensorflow.org/install/source_windows
https://tensorflow.google.cn/install/source_windows
搭建新环境命令,在Anaconda Prompt中执行,不是Powershell
注意版本的对应关系,如下为本人使用的版本
如果没装Anaconda,请参见:Anaconda安装步骤
conda create --name Deeplearning_practice_gpu python=3.8 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
activate Deeplearning_practice_gpu #注意一定要激活该环境,并切换到该环境
python -m pip install --upgrade pip -i https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install tensorflow-gpu==2.4.0
pip install scikit-learn
pip install opencv-python
pip install xlrd
pip install matplotlib
pip install pandas
如果清华源下载慢,可更换源,常见源如下:
清华大学:https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
清华大学:https://pypi.tuna.tsinghua.edu.cn/simple/
清华大学:https://pypi.tuna.tsinghua.edu.cn/simple
清华大学:https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
阿里云:https://mirrors.aliyun.com/pypi/simple/
豆瓣:http://pypi.douban.com/simple/
中国科学技术大学:http://pypi.mirrors.ustc.edu.cn/simple/
中国科学技术大学:https://mirrors.ustc.edu.cn/anaconda/pkgs/free
7测试环境是否搭建成功
1、在conda环境中输入 nvcc -V 查看CUDA是否安装成功,能正常显示一般就没问题了。
2、新建py文件,通过代码测试一下:
import tensorflow as tf
# print(tf.test.is_gpu_available())
print(tf.config.list_physical_devices('GPU'))
print(tf.test.gpu_device_name())
# GPU加如下
physical_devices = tf.config.experimental.list_physical_devices('GPU')
print(len(physical_devices))
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
tf.config.experimental.set_memory_growth(physical_devices[0], True)
3、使用GPU跑代码需要在代码前加如下(好像不加也行?欢迎评论指正)
应该是不加也行,关键需要把tensorflow-gpu和cuda的版本对应
# GPU加如下
physical_devices = tf.config.experimental.list_physical_devices('GPU')
print(len(physical_devices))
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
tf.config.experimental.set_memory_growth(physical_devices[0], True)
8常见问题
1、在Pycharm中,运行程序,报错:
Could not load dynamic library ‘cusolver64_10.dll’;
解决:
到如下目录中,将cusolver64_11.dll复制一份改名为cusolver64_10.dll
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin
修改后正常运行了,但是GPU利用率太低,可将batch_size调大即可。
经过如上步骤,如果不能用GPU进行训练,依次进行排查。
先重启一下!!!
2、查看显卡驱动是否正确安装:
cmd输入nvidia-smi
如果不能正确显示,请到电脑品牌官网或者显卡官网下载显卡驱动。
N卡驱动下载地址 需要科学上网
https://www.nvidia.cn/Download/index.aspx?lang=cn
3、查看CUDA是否正确安装:
在conda环境中输入 nvcc -V
如不能正确显示,可能CUDA、cuDNN未正确安装,或者版本不匹配等。
4、重装系统后,开始菜单的Anaconda Powershell Prompt消失了
在anaconda目录执行命令
python .\Lib_nsis.py mkmenus
相关链接: