Diffusion Model相关论文整理(二)

1、AnoDDPM: Anomaly Detection With Denoising Diffusion Probabilistic Models Using Simplex Noise [CVPR Workshop 2022]

高斯扩散不能捕获较大的异常,因此,我们开发了一个多尺度的单纯形噪声扩散过程来控制目标异常大小。
使用Simplex噪声的去噪扩散概率模型进行异常检测,在高分辨率图像上具有良好的重建能力,并在肿瘤数据集上取得了显著的性能提升。我们构建了一个基于纯健康患者数据的模型AnoDDPM,该模型通过部分扩散过程将潜在的异常查询数据映射到健康分布上。然后,我们可以通过与原始图像进行比较来突出显示异常情况。部分扩散允许更好地重建样本从数据分布和规模到高分辨率图像良好。与完全扩散相比,较短的马尔可夫链会导致更快的推理和训练。
我们发现具有单纯形噪声的AnoDDPM通过不需要大数据集的稳定训练成功捕获了大的异常区域,避免了基于GAN的方法中常见的局限性。在医疗和非医疗应用中,使用多标量(单纯形)噪声代替高斯噪声在捕获更大的异常形状方面提供了显著的改进。

2、Unsupervised Visual Defect Detection with Score-Based Generative Model[2022]

所提出的方法基于扩散过程,通过正向随机微分方程(SDE)逐渐向原始数据添加噪声,并生成一系列数据。反向过程旨在通过使用梯度驱动的条件概率密度函数的逆向扩散过程,从噪声数据中恢复原始数据。通过最小化损失函数来训练基于评分的生成模型,以学习评分函数,即对数条件概率密度函数的梯度。
反向扩散过程可以通过反向SDE或概率流常微分方程(ODE)来实现。
定义了两种类型的评分:整体评分和自身评分,用于驱动反向过程和评估数据异常。whole-score 可能指的是对整个图像或数据样本的分数评估。这个分数是基于整个图像的数据分布特性计算得出的,用于衡量整个图像与正常图像分布的一致性。如果整个图像的分数较低,可能表明图像中存在异常区域。self-score可能更侧重于图像内部各个区域或像素点自身的分数评估。这种分数可能是基于局部特征或像素邻域计算得出的,用于衡量图像中每个局部区域与周围正常区域的相似性。通过比较不同区域的自分数,可以定位出图像中的异常区域。

3、DiffusionAD: Denoising Diffusion for Anomaly Detection [2023][code]

DiffusionAD的核心在于其双轨制结构——重建子网络采用扩散模型来恢复异常图片至正常状态;而分割子网络则依据原始图片与其恢复版本的差异,进行像素级异常评分预测。尤其引人瞩目的是,该框架采取了一次性去噪方案,相较传统多步骤迭代法,极大地提高了运行效率。

关键技术创新点:
一步去噪模式:摒弃了冗长的迭代过程,直接从噪声分布中抽样出高质量的无异图像。
**规范引导重构:**引入特有规范指导机制,进行两个尺度的扩散和重建,t较小时展示更高的像素质量,保留有细密纹理的细节,但无法重建大缺陷,t较大时引入较大失真,但同时也可以重建较大异常。先进性较大尺度重建,得到正常图像,再用这个正常图像作为条件,去制导小尺度的重建,这样就可以兼容大小异常,又能保证较好的重建质量。
**异常图像生成:**利用柏林噪声和正常图像的mask,得到异常图像mask M,再联合正常图像N,正常样本自增强或者纹理描述数据集图像,得到最终异常图像

在这里插入图片描述

4、Anomaly Detection with Conditioned Denoising Diffusion Models [2023]

提出的方法是DDAD框架,它涉及一种用于重建的条件去噪过程。该过程旨在逐步去噪扰动图像,以得到与目标图像相似的图像。重建过程涉及将得分函数与目标图像进行条件化,以实现后验得分函数∇xt log pθ(xt|y)。用于异常检测任务的重建涉及将目标图像设置为输入图像,以生成输入图像的无异常近似。通过像素级和特征级距离函数进行异常评分,以得出异常热图。此外,提出了一种领域自适应技术,用于微调特征提取器以适应异常检测任务的特定领域特征。
1、将输入异常图像本身作为条件去引导图像重建过程,以生成输入图像的无异常近似。
2、利用余弦相似度将预训练模型转移到领域自适应网络中。为了解决自适应过程中泛化能力下降的问题,从冻结的特征提取器中引入了蒸馏损失。领域自适应损失由相似性损失和蒸馏损失的组合表示。

5、Unsupervised Surface Anomaly Detection with Diffusion Probabilistic Model [ICCV 2023]

本研究提出了一种基于扩散概率模型的无监督表面异常检测方法 DiffAD,通过改进图像重建技术解决了当前方法的重建质量不足、神经网络异常重建和多重正常模式的问题,在MVTec数据集上取得了最先进的性能表现,特别是在异常定位准确性方面。
1)DiffAD引入了噪声条件嵌入和插值通道,以提高异常检测中的重建质量和多样性。
2)噪声条件嵌入通过噪声扩散潜在表示,区分正常和异常区域,提高重建质量。
3)插值通道生成额外特征通道,增强重建期间的多样性。

6、Removing Anomalies as Noises for Industrial Defect Localization [ICCV 2023]

1)用于重建的梯度去噪方法
采用由PaDiM近似的多元高斯分布来描述无异常数据的深层特征。对于重建,使用马氏距离梯度下降对图像进行优化
2)综合了像素级得分和特征级得分的对于多尺度噪声的重建方法
训练扩散模型涉及使用自编码器方法,其中使用MSE损失来预测噪声的尺度。通过基于变分界限的额外训练损失来学习扩散模型自动处理噪声的方差。异常检测的去噪模型利用生成式扩散模型逐渐去噪和重建图像,利用像素级和特征级分数计算异常分数以提高异常检测准确性。异常检测方法在像素空间和特征空间结合的分布方法中考虑了多尺度噪声,提出了渐变去噪方法通过扩散模型去除图像中的异常。

  • 15
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值