两层神经网络,反向传导

这段代码演示了如何用神经网络进行预测,包括前向传播计算预测值,损失函数计算误差,以及反向传播求取权重梯度并更新权重的过程。网络结构为全连接层,输入维度为100,隐藏层节点数为100,输出维度为10。训练进行了500轮,学习率为1e-6。
摘要由CSDN通过智能技术生成

#神经网络
import numpy as np
N, D_in, H, D_out = 64, 100, 100, 10
x = np.random.randn(N, D_in)        #64*1000
y = np.random.randn(N, D_out)       #64*10

w1 = np.random.randn(D_in, H)       #1000*100
w2 = np.random.randn(H, D_out)      #100*10

learning_rate =1e-6

for t in range(500):
    # Forward pass: compute predicted y
    h = x.dot(w1)       #same to np.dot(x,w1), h:64*100
    h_relu = np.maximum(h, 0)       #64*100
    y_pred = h_relu.dot(w2)         #64*10

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)     #h_relu.T is the transpose of h_relu,也就是转置,h_relu.T:100*64
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)

    # Update weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值