《推荐系统》-FM模型

FM(Factorization Machine)模型是为了解决数据稀疏情况下特征组合问题,尤其适用于CTR预估。它通过引入特征隐向量,用较少的参数表示特征间的交互,解决了线性模型忽视特征关联的问题。FM模型的二次项参数通过矩阵分解优化,降低了计算复杂度,使其能在稀疏数据中高效训练和预测。
摘要由CSDN通过智能技术生成

1、背景

在计算广告和推荐系统中,CTR预估(click-through rate)是非常重要的一个环节,判断一个商品的是否进行推荐需要根据CTR预估的点击率来进行。在进行CTR预估时,除了单特征外,往往要对特征进行组合。对于特征组合来说,业界常用的方法有人工特征工程 + LR(Logistic Regression)、GBDT(Gradient Boosting Decision Tree) + LR、FM(Factorization Machine)和FFM(Field-aware Factorization Machine)模型。最近几年也出现了很多基于FM改进的方法,如deepFM,FNN,PNN,DCN,xDeepFM等。

2、动机(one-hot编码带来的问题)

FM(Factorization Machine)主要是为了解决数据稀疏的情况下,特征怎样组合的问题。已一个广告分类的问题为例,根据用户与广告位的一些特征,来预测用户是否会点击广告。数据如下:(本例来自美团技术团队分享的paper)
在这里插入图片描述
图1、训练数据

clicked是分类值,表明用户有没有点击该广告。1表示点击,0表示未点击。而country,day,ad_type则是对应的特征。对于这种categorical特征,一般都是进行one-hot编码处理。

将上面的数据进行one-hot编码以后,就变成了下面这样 :
在这里插入图片描述
图2、经过one-hot

因为是categorical特征,所以经过one-hot编码以后,不可避免的样本的数据就变得很稀疏。举个非常简单的例子,假设淘宝或者京东上的item为100万,如果对item这个维度进行one-hot编码,光这一个维度数据的稀疏度就是百万分之一。由此可见,数据的稀疏性,是我们在实际应用场景中面临的一个非常常见的挑战与问题。

one-hot编码带来的另一个问题是特征空间变大。同样以上面淘宝上的item为例,将item进行one-hot编码以后,样本空间有一个categorical变为了百万维的数值特征,特征空间一下子暴增一百万。所以大厂动不动上亿维度,就是这么来的。

3、对特征进行组合

普通的线性模型,我们都是将各个特征独立考虑的,并没有考虑到特征与特征之间的相互关系。但实际上,大量的特征之间是有关联的。最简单的以电商为例,一般女性用户看化妆品服装之类的广告比较多,而男性更青睐各种球类装备。那很明显,女性这个特征与化妆品类服装类商品有很大的关联性,男性这个特征与球类装备的关联性更为密切。如果我们能将这些有关联的特征找出来,显然是很有意义的。

一般的线性模型为:
y ( x ) = w 0 + ∑ i = 1 n w i x i y(x)=w_{0} +\sum_{i=1}^n{w_{i} }x_{i} y(x)=w0+i=1nwixi

从上面的式子很容易看出,一般的线性模型压根没有考虑特征间的关联。为了表述特征间的相关性,我们采用多项式模型。在多项式模型中,特征 x i x_{i} xi x j x_{j} xj 的组合用 x i x j x_{i} x_{j} xixj 表示。为了简单起见,我们讨论二阶多项式模型。具体的模型表达式如下:

为了简单起见,我们只考虑二阶交叉的情况,具体的模型如下:
y ( x ) = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n ∑ j = i + 1 n w i j x i x j y(x)=w_{0} +\sum_{i=1}^n{w_{i} x_{i} }+\sum_{i=1}^{n} \sum_{j=i+1}^n w_{ij} x_{i} x_{j} y(x)=w0+i=1nwixi+i=1nj=i+1nwijxix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值